3Sum (Medium)
问题描述
给出一个数组,求其中三个数之和为零的 集合
Examples
Input
[-1, 0, 1, 2, -1, -4]
Output
[
[-1, 0, 1],
[-1, -1, 2]
]
算法思路
一开始尝试的很多方法,想bsp回溯,双指针移动等等,都没有用,复杂度都是 O(n³),最后想到了以前编程书上的 二分法,在这里也是发篇文章记录下怕自己忘记
二分法的前提为有序数组
先遍历数组然后采用二分法
注意去重动作
AC 代码
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
if (nums.size() <= 2) {
return result;
}
vector<int> temp;
// sort
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size() - 2; i++) {
// remove duplicate ones
if (i != 0 && nums[i] == nums[i - 1]) {
continue;
}
int target = -nums[i];
int low = i + 1, high = nums.size() - 1;
// binary serch
while (low < high) {
int curSum = nums[low] + nums[high];
if (curSum == target) {
temp.clear();
temp.push_back(nums[i]);
temp.push_back(nums[low]);
temp.push_back(nums[high]);
result.push_back(temp);
// remove duplicate ones
while (low < high && nums[high] == nums[high - 1]) {
high--;
}
while (low < high && nums[low] == nums[low + 1]) {
low++;
}
low++;
high--;
} else if (curSum > target) {
// greaten it
while (low < high && nums[high] == nums[high - 1]) {
high--;
}
high--;
} else {
// minify it
while (low < high && nums[low] == nums[low + 1]) {
low++;
}
low++;
}
}
}
return result;
}
};
3Sum Closest (Medium)
问题描述
给出一个数组,求其中最接近目标数的三数之和
Examples
Input
[-1, 2, 1, -4]
1
Output
2 (-1 + 2 + 1 = 2).
算法思路
理解了第一题,这道题也差不多了,不重复写了只贴代码
AC 代码
class Solution {
public:
int threeSumClosest(vector<int>& nums, int target) {
sort(nums.begin(), nums.end());
int closeSum = 0;
int closeDif = 0x7fffffff;
for (int i = 0; i < nums.size() - 2; i++) {
int low = i + 1, high = nums.size() - 1;
while (low < high) {
int sum = nums[i] + nums[low] + nums[high];
int dif = abs(target - sum);
if (sum == target) {
return target;
} else if (sum < target) {
low++;
} else {
high--;
}
if (closeDif > dif) {
closeDif = dif;
closeSum = sum;
}
}
}
return closeSum;
}
};
4Sum (Medium)
问题描述
给出一个数组,求其中最接近目标数的四数之和
Examples
Input
[1, 0, -1, 0, -2, 2]
0
Output
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
算法思路
理解了前面两题,这道题也差不多了,不重复写思路了,值得注意的是,这里可以采用 集合来改善代码和降低复杂度 O(n³ × log N) -> O(n³)
AC 代码
vector<vector<int>> fourSum(vector<int>& nums, int target) {
set<vector<int>> set;
sort(nums.begin(), nums.end());
for (int i = 0; i < (int) (nums.size() - 3); i++) {
for (int j = i + 1; j < (int) (nums.size() - 2); j++) {
int left = j + 1, right = nums.size() - 1;
while (left < right) {
int sum = nums[i] + nums[j] + nums[left] + nums[right];
if (sum == target) {
vector<int> out;
out.push_back(nums[i]);
out.push_back(nums[j]);
out.push_back(nums[left]);
out.push_back(nums[right]);
set.insert(out);
left++;
right--;
} else if (sum < target) {
left++;
} else {
right--;
}
}
}
}
return vector<vector<int>> (set.begin(), set.end());
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。