3

最近找到一本python好书《流畅的python》,是到现在为止看到的对python高级特性讲述最详细的一本。
看了协程一章,做个读书笔记,加深印象。

协程定义

协程的底层架构是在pep342 中定义,并在python2.5 实现的。

python2.5 中,yield关键字可以在表达式中使用,而且生成器API中增加了 .send(value)方法。生成器可以使用.send(...)方法发送数据,发送的数据会成为生成器函数中yield表达式的值。

协程是指一个过程,这个过程与调用方协作,产出有调用方提供的值。因此,生成器可以作为协程使用。

除了 .send(...)方法,pep342 和添加了 .throw(...)(让调用方抛出异常,在生成器中处理)和.close()(终止生成器)方法。

python3.3后,pep380对生成器函数做了两处改动:

  • 生成器可以返回一个值;以前,如果生成器中给return语句提供值,会抛出SyntaxError异常。

  • 引入yield from 语法,使用它可以把复杂的生成器重构成小型的嵌套生成器,省去之前把生成器的工作委托给子生成器所需的大量模板代码。

协程生成器的基本行为

首先说明一下,协程有四个状态,可以使用inspect.getgeneratorstate(...)函数确定:

  • GEN_CREATED # 等待开始执行

  • GEN_RUNNING # 解释器正在执行(只有在多线程应用中才能看到这个状态)

  • GEN_SUSPENDED # 在yield表达式处暂停

  • GEN_CLOSED # 执行结束

#! -*- coding: utf-8 -*-
import inspect

# 协程使用生成器函数定义:定义体中有yield关键字。
def simple_coroutine():
    print('-> coroutine started')
    # yield 在表达式中使用;如果协程只需要从客户那里接收数据,yield关键字右边不需要加表达式(yield默认返回None)
    x = yield
    print('-> coroutine received:', x)


my_coro = simple_coroutine()
my_coro # 和创建生成器的方式一样,调用函数得到生成器对象。
# 协程处于 GEN_CREATED (等待开始状态)
print(inspect.getgeneratorstate(my_coro))

my_coro.send(None)
# 首先要调用next()函数,因为生成器还没有启动,没有在yield语句处暂停,所以开始无法发送数据
# 发送 None 可以达到相同的效果 my_coro.send(None) 
next(my_coro)
# 此时协程处于 GEN_SUSPENDED (在yield表达式处暂停)
print(inspect.getgeneratorstate(my_coro))

# 调用这个方法后,协程定义体中的yield表达式会计算出42;现在协程会恢复,一直运行到下一个yield表达式,或者终止。
my_coro.send(42)
print(inspect.getgeneratorstate(my_coro))

运行上述代码,输出结果如下

GEN_CREATED
-> coroutine started
GEN_SUSPENDED
-> coroutine received: 42

# 这里,控制权流动到协程定义体的尾部,导致生成器像往常一样抛出StopIteration异常
Traceback (most recent call last):
  File "/Users/gs/coroutine.py", line 18, in <module> 
    my_coro.send(42)
StopIteration

send方法的参数会成为暂停yield表达式的值,所以,仅当协程处于暂停状态是才能调用send方法。
如果协程还未激活(GEN_CREATED 状态)要调用next(my_coro) 激活协程,也可以调用my_coro.send(None)

如果创建协程对象后立即把None之外的值发给它,会出现下述错误:

>>> my_coro = simple_coroutine()
>>> my_coro.send(123)

Traceback (most recent call last):
  File "/Users/gs/coroutine.py", line 14, in <module>
    my_coro.send(123)
TypeError: can't send non-None value to a just-started generator

仔细看错误消息

can't send non-None value to a just-started generator

最先调用next(my_coro) 这一步通常称为”预激“(prime)协程---即,让协程向前执行到第一个yield表达式,准备好作为活跃的协程使用。

再看一个两个值得协程

def simple_coro2(a):
    print('-> coroutine started: a =', a)
    b = yield a
    print('-> Received: b =', b)
    c = yield a + b
    print('-> Received: c =', c)

my_coro2 = simple_coro2(14)
print(inspect.getgeneratorstate(my_coro2))
# 这里inspect.getgeneratorstate(my_coro2) 得到结果为 GEN_CREATED (协程未启动)

next(my_coro2)
# 向前执行到第一个yield 处 打印 “-> coroutine started: a = 14”
# 并且产生值 14 (yield a 执行 等待为b赋值)
print(inspect.getgeneratorstate(my_coro2))
# 这里inspect.getgeneratorstate(my_coro2) 得到结果为 GEN_SUSPENDED (协程处于暂停状态)

my_coro2.send(28)
# 向前执行到第二个yield 处 打印 “-> Received: b = 28”
# 并且产生值 a + b = 42(yield a + b 执行 得到结果42 等待为c赋值)
print(inspect.getgeneratorstate(my_coro2))
# 这里inspect.getgeneratorstate(my_coro2) 得到结果为 GEN_SUSPENDED (协程处于暂停状态)

my_coro2.send(99)
# 把数字99发送给暂停协程,计算yield 表达式,得到99,然后把那个数赋值给c 打印 “-> Received: c = 99”
# 协程终止,抛出StopIteration

运行上述代码,输出结果如下

GEN_CREATED
-> coroutine started: a = 14
GEN_SUSPENDED
-> Received: b = 28
-> Received: c = 99

Traceback (most recent call last):
  File "/Users/gs/coroutine.py", line 37, in <module>
    my_coro2.send(99)
StopIteration

simple_coro2 协程的执行过程分为3个阶段,如下图所示

  1. 调用next(my_coro2),打印第一个消息,然后执行yield a,产出数字14.

  2. 调用my_coro2.send(28),把28赋值给b,打印第二个消息,然后执行 yield a + b 产生数字42

  3. 调用my_coro2.send(99),把99赋值给c,然后打印第三个消息,协程终止。

使用装饰器预激协程

我们已经知道,协程如果不预激,不能使用send() 传入非None 数据。所以,调用my_coro.send(x)之前,一定要调用next(my_coro)。
为了简化,我们会使用装饰器预激协程。

from functools import wraps

def coroutinue(func):
    '''
    装饰器: 向前执行到第一个`yield`表达式,预激`func`
    :param func: func name
    :return: primer
    '''

    @wraps(func)
    def primer(*args, **kwargs):
        # 把装饰器生成器函数替换成这里的primer函数;调用primer函数时,返回预激后的生成器。
        gen = func(*args, **kwargs)
        # 调用被被装饰函数,获取生成器对象
        next(gen)  # 预激生成器
        return gen  # 返回生成器
    return primer


# 使用方法如下

@coroutinue
def simple_coro(a):
    a = yield

simple_coro(12)  # 已经预激

终止协程和异常处理

协程中,为处理的异常会向上冒泡,传递给next函数或send方法的调用方,未处理的异常会导致协程终止。

看下边这个例子

#! -*- coding: utf-8 -*-

from functools import wraps

def coroutinue(func):
    '''
    装饰器: 向前执行到第一个`yield`表达式,预激`func`
    :param func: func name
    :return: primer
    '''

    @wraps(func)
    def primer(*args, **kwargs):
        # 把装饰器生成器函数替换成这里的primer函数;调用primer函数时,返回预激后的生成器。
        gen = func(*args, **kwargs)
        # 调用被被装饰函数,获取生成器对象
        next(gen)  # 预激生成器
        return gen  # 返回生成器
    return primer


@coroutinue
def averager():
    # 使用协程求平均值
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield average
        total += term
        count += 1
        average = total/count

coro_avg = averager()
print(coro_avg.send(40))
print(coro_avg.send(50))
print(coro_avg.send('123')) # 由于发送的不是数字,导致内部有异常抛出。

执行上述代码结果如下

40.0
45.0
Traceback (most recent call last):
  File "/Users/gs/coro_exception.py", line 37, in <module>
    print(coro_avg.send('123'))
  File "/Users/gs/coro_exception.py", line 30, in averager
    total += term
TypeError: unsupported operand type(s) for +=: 'float' and 'str'

出错的原因是发送给协程的'123'值不能加到total变量上。
出错后,如果再次调用 coro_avg.send(x) 方法 会抛出 StopIteration 异常。

由上边的例子我们可以知道,如果想让协程退出,可以发送给它一个特定的值。比如None和Ellipsis。(推荐使用Ellipsis,因为我们不太使用这个值)
从Python2.5 开始,我们可以在生成器上调用两个方法,显式的把异常发给协程。
这两个方法是throw和close。

generator.throw(exc_type[, exc_value[, traceback]])

这个方法使生成器在暂停的yield表达式处抛出指定的异常。如果生成器处理了抛出的异常,代码会向前执行到下一个yield表达式,而产出的值会成为调用throw方法得到的返回值。如果没有处理,则向上冒泡,直接抛出。

generator.close()

生成器在暂停的yield表达式处抛出GeneratorExit异常。
如果生成器没有处理这个异常或者抛出了StopIteration异常,调用方不会报错。如果收到GeneratorExit异常,生成器一定不能产出值,否则解释器会抛出RuntimeError异常。

示例: 使用close和throw方法控制协程。

import inspect


class DemoException(Exception):
    pass


@coroutinue
def exc_handling():
    print('-> coroutine started')
    while True:
        try:
            x = yield
        except DemoException:
            print('*** DemoException handled. Conginuing...')
        else:
            # 如果没有异常显示接收到的值
            print('--> coroutine received: {!r}'.format(x))
    raise RuntimeError('This line should never run.')  # 这一行永远不会执行 


exc_coro = exc_handling()

exc_coro.send(11)
exc_coro.send(12)
exc_coro.send(13)
exc_coro.close()
print(inspect.getgeneratorstate(exc_coro))

raise RuntimeError('This line should never run.') 永远不会执行,因为只有未处理的异常才会终止循环,而一旦出现未处理的异常,协程会立即终止。

执行上述代码得到结果为:

-> coroutine started
--> coroutine received: 11
--> coroutine received: 12
--> coroutine received: 13
GEN_CLOSED    # 协程终止

上述代码,如果传入DemoException,协程不会中止,因为做了异常处理。

exc_coro = exc_handling()

exc_coro.send(11)
exc_coro.send(12)
exc_coro.send(13)
exc_coro.throw(DemoException) # 协程不会中止,但是如果传入的是未处理的异常,协程会终止
print(inspect.getgeneratorstate(exc_coro))
exc_coro.close()
print(inspect.getgeneratorstate(exc_coro))

## output

-> coroutine started
--> coroutine received: 11
--> coroutine received: 12
--> coroutine received: 13
*** DemoException handled. Conginuing...
GEN_SUSPENDED
GEN_CLOSED

如果不管协程如何结束都想做些处理工作,要把协程定义体重的相关代码放入try/finally块中。

@coroutinue
def exc_handling():
    print('-> coroutine started')
    try:
        while True:
            try:
                x = yield
            except DemoException:
                print('*** DemoException handled. Conginuing...')
            else:
                # 如果没有异常显示接收到的值
                print('--> coroutine received: {!r}'.format(x))
    finally:
        print('-> coroutine ending')

上述部分介绍了:

  • 生成器作为协程使用时的行为和状态

  • 使用装饰器预激协程

  • 调用方如何使用生成器对象的 .throw(...)和.close() 方法控制协程

下一部分将介绍:

  • 协程终止时如何返回值

  • yield新句法的用途和语义

最后,感谢女朋友支持。

>欢迎关注 >请我喝芬达
欢迎关注 请我喝芬达

goodspeed
1.7k 声望246 粉丝

公号 April_Louisa 欢迎关注