类的定义
假如要定义一个类 Point
,表示二维的坐标点:
# point.py
class Point:
def __init__(self, x=0, y=0):
self.x, self.y = x, y
最最基本的就是 __init__
方法,相当于 C++ / Java 的构造函数。带双下划线 __
的方法都是特殊方法,除了 __init__
还有很多,后面会有介绍。
参数 self
相当于 C++ 的 this
,表示当前实例,所有方法都有这个参数,但是调用时并不需要指定。
>>> from point import *
>>> p = Point(10, 10) # __init__ 被调用
>>> type(p)
<class 'point.Point'>
>>> p.x, p.y
(10, 10)
几乎所有的特殊方法(包括 __init__
)都是隐式调用的(不直接调用)。
对一切皆对象的 Python 来说,类自己当然也是对象:
>>> type(Point)
<class 'type'>
>>> dir(Point)
['__class__', '__delattr__', '__dict__', ..., '__init__', ...]
>>> Point.__class__
<class 'type'>
Point
是 type
的一个实例,这和 p
是 Point
的一个实例是一回事。
现添加方法 set
:
class Point:
...
def set(self, x, y):
self.x, self.y = x, y
>>> p = Point(10, 10)
>>> p.set(0, 0)
>>> p.x, p.y
(0, 0)
p.set(...)
其实只是一个语法糖,你也可以写成 Point.set(p, ...)
,这样就能明显看出 p
就是 self
参数了:
>>> Point.set(p, 0, 0)
>>> p.x, p.y
(0, 0)
值得注意的是,self
并不是关键字,甚至可以用其它名字替代,比如 this
:
class Point:
...
def set(this, x, y):
this.x, this.y = x, y
与 C++ 不同的是,“成员变量”必须要加 self.
前缀,否则就变成类的属性(相当于 C++ 静态成员),而不是对象的属性了。
访问控制
Python 没有 public / protected / private
这样的访问控制,如果你非要表示“私有”,习惯是加双下划线前缀。
class Point:
def __init__(self, x=0, y=0):
self.__x, self.__y = x, y
def set(self, x, y):
self.__x, self.__y = x, y
def __f(self):
pass
__x
、__y
和 __f
就相当于私有了:
>>> p = Point(10, 10)
>>> p.__x
...
AttributeError: 'Point' object has no attribute '__x'
>>> p.__f()
...
AttributeError: 'Point' object has no attribute '__f'
__repr__
尝试打印 Point
实例:
>>> p = Point(10, 10)
>>> p
<point.Point object at 0x000000000272AA20>
通常,这并不是我们想要的输出,我们想要的是:
>>> p
Point(10, 10)
添加特殊方法 __repr__
即可实现:
class Point:
def __repr__(self):
return 'Point({}, {})'.format(self.__x, self.__y)
不难看出,交互模式在打印 p
时其实是调用了 repr(p)
:
>>> repr(p)
'Point(10, 10)'
__str__
如果没有提供 __str__
,str()
缺省使用 repr()
的结果。
这两者都是对象的字符串形式的表示,但还是有点差别的。简单来说,repr()
的结果面向的是解释器,通常都是合法的 Python 代码,比如 Point(10, 10)
;而 str()
的结果面向用户,更简洁,比如 (10, 10)
。
按照这个原则,我们为 Point
提供 __str__
的定义如下:
class Point:
def __str__(self):
return '({}, {})'.format(self.__x, self.__y)
__add__
两个坐标点相加是个很合理的需求。
>>> p1 = Point(10, 10)
>>> p2 = Point(10, 10)
>>> p3 = p1 + p2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'Point' and 'Point'
添加特殊方法 __add__
即可做到:
class Point:
def __add__(self, other):
return Point(self.__x + other.__x, self.__y + other.__y)
>>> p3 = p1 + p2
>>> p3
Point(20, 20)
这就像 C++ 里的操作符重载一样。
Python 的内建类型,比如字符串、列表,都“重载”了 +
操作符。
特殊方法还有很多,这里就不逐一介绍了。
继承
举一个教科书中最常见的例子。Circle
和 Rectangle
继承自 Shape
,不同的图形,面积(area
)计算方式不同。
# shape.py
class Shape:
def area(self):
return 0.0
class Circle(Shape):
def __init__(self, r=0.0):
self.r = r
def area(self):
return math.pi * self.r * self.r
class Rectangle(Shape):
def __init__(self, a, b):
self.a, self.b = a, b
def area(self):
return self.a * self.b
用法比较直接:
>>> from shape import *
>>> circle = Circle(3.0)
>>> circle.area()
28.274333882308138
>>> rectangle = Rectangle(2.0, 3.0)
>>> rectangle.area()
6.0
如果 Circle
没有定义自己的 area
:
class Circle(Shape):
pass
那么它将继承父类 Shape
的 area
:
>>> Shape.area is Circle.area
True
一旦 Circle
定义了自己的 area
,从 Shape
继承而来的那个 area
就被重写(overwrite
)了:
>>> from shape import *
>>> Shape.area is Circle.area
False
通过类的字典更能明显地看清这一点:
>>> Shape.__dict__['area']
<function Shape.area at 0x0000000001FDB9D8>
>>> Circle.__dict__['area']
<function Circle.area at 0x0000000001FDBB70>
所以,子类重写父类的方法,其实只是把相同的属性名绑定到了不同的函数对象。可见 Python 是没有覆写(override
)的概念的。
同理,即使 Shape
没有定义 area
也是可以的,Shape
作为“接口”,并不能得到语法的保证。
甚至可以动态的添加方法:
class Circle(Shape):
...
# def area(self):
# return math.pi * self.r * self.r
# 为 Circle 添加 area 方法。
Circle.area = lambda self: math.pi * self.r * self.r
动态语言一般都是这么灵活,Python 也不例外。
Python 官方教程「9. Classes」第一句就是:
Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new syntax and semantics.
Python 以最少的新的语法和语义实现了类机制,这一点确实让人惊叹,但是也让 C++ / Java 程序员感到颇为不适。
多态
如前所述,Python 没有覆写(override
)的概念。严格来讲,Python 并不支持「多态」。
为了解决继承结构中接口和实现的问题,或者说为了更好的用 Python 面向接口编程(设计模式所提倡的),我们需要人为的设一些规范。
请考虑 Shape.area()
除了简单的返回 0.0
,有没有更好的实现?
以内建模块 asyncio
为例,AbstractEventLoop
原则上是一个接口,类似于 Java 中的接口或 C++ 中的纯虚类,但是 Python 并没有语法去保证这一点,为了尽量体现 AbstractEventLoop
是一个接口,首先在名字上标志它是抽象的(Abstract),然后让每个方法都抛出异常 NotImplementedError
。
class AbstractEventLoop:
def run_forever(self):
raise NotImplementedError
...
纵然如此,你是无法禁止用户实例化 AbstractEventLoop
的:
loop = asyncio.AbstractEventLoop()
try:
loop.run_forever()
except NotImplementedError:
pass
C++ 可以通过纯虚函数或设构造函数为 protected
来避免接口被实例化,Java 就更不用说了,接口就是接口,有完整的语法支持。
你也无法强制子类必须实现“接口”中定义的每一个方法,C++ 的纯虚函数可以强制这一点(Java 更不必说)。
就算子类「自以为」实现了“接口”中的方法,也不能保证方法的名字没有写错,C++ 的 override
关键字可以保证这一点(Java 更不必说)。
静态类型的缺失,让 Python 很难实现 C++ / Java 那样严格的多态检查机制。所以面向接口的编程,对 Python 来说,更多的要依靠程序员的素养。
回到 Shape
的例子,仿照 asyncio
,我们把“接口”改成这样:
class AbstractShape:
def area(self):
raise NotImplementedError
这样,它才更像一个接口。
super
有时候,需要在子类中调用父类的方法。
比如图形都有颜色这个属性,所以不妨加一个参数 color
到 __init__
:
class AbstractShape:
def __init__(self, color):
self.color = color
那么子类的 __init__()
势必也要跟着改动:
class Circle(AbstractShape):
def __init__(self, color, r=0.0):
super().__init__(color)
self.r = r
通过 super
把 color
传给父类的 __init__()
。其实不用 super
也行:
class Circle(AbstractShape):
def __init__(self, color, r=0.0):
AbstractShape.__init__(self, color)
self.r = r
但是 super
是推荐的做法,因为它避免了硬编码,也能处理多继承的情况。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。