Brendan Eich用了10天就创造了JavaScript,因为当时的需求定位,导致了在设计之初,在语言层就不包含很多高级语言的特性,其中就包括模块这个特性,但是经过了这么多年的发展,如今对JavaScript的需求已经远远超出了Brendan Eich的预期,其中模块化开发更是其中最大的需求之一。
尤其是2009年Node.js出现以后,CommonJS规范的落地极大的推动了整个社区的模块化开发氛围,并且随之出现了AMD、CMD、UMD等等一系列可以在浏览器等终端实现的异步加载的模块化方案。
此前,虽然自己也一直在推进模块化开发,但是没有深入了解过模块化演进的历史,直到最近看到了一篇文章《精读JS模块化发展》,文章总结了History of JavaScript这个开源项目中关于JavaScript模块化演进的部分,细读几次之后,对于一些以前模棱两可的东西,顿时清晰了不少,下面就以时间线总结一下自己的理解:
在1999年的时候,绝大部分工程师做JS开发的时候就直接将变量定义在全局,做的好一些的或许会做一些文件目录规划,将资源归类整理,这种方式被称为直接定义依赖,举个例子:
// greeting.js
var helloInLang = {
en: 'Hello world!',
es: '¡Hola mundo!',
ru: 'Привет мир!'
};
function writeHello(lang) {
document.write(helloInLang[lang]);
}
// third_party_script.js
function writeHello() {
document.write('The script is broken');
}
// index.html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Basic example</title>
<script src="./greeting.js"></script>
<script src="./third_party_script.js"></script>
</head>
<body onLoad="writeHello('ru')">
</body>
</html>
但是,即使有规范的目录结构,也不能避免由此而产生的大量全局变量,这就导致了一不小心就会有变量冲突的问题,就好比上面这个例子中的writeHello
。
于是在2002年左右,有人提出了命名空间模式的思路,用于解决遍地的全局变量,将需要定义的部分归属到一个对象的属性上,简单修改上面的例子,就能实现这种模式:
// greeting.js
var app = {};
app.helloInLang = {
en: 'Hello world!',
es: '¡Hola mundo!',
ru: 'Привет мир!'
};
app.writeHello = function (lang) {
document.write(helloInLang[lang]);
}
// third_party_script.js
function writeHello() {
document.write('The script is broken');
}
不过这种方式,毫无隐私可言,本质上就是全局对象,谁都可以来访问并且操作,一点都不安全。
所以在2003年左右就有人提出利用IIFE结合Closures特性,以此解决私有变量的问题,这种模式被称为闭包模块化模式:
// greeting.js
var greeting = (function() {
var module = {};
var helloInLang = {
en: 'Hello world!',
es: '¡Hola mundo!',
ru: 'Привет мир!',
};
module.getHello = function(lang) {
return helloInLang[lang];
};
module.writeHello = function(lang) {
document.write(module.getHello(lang));
};
return module;
})();
IIFE可以形成一个独立的作用域,其中声明的变量,仅在该作用域下,从而达到实现私有变量的目的,就如上面例子中的helloInLang
,在该IIFE外是不能直接访问和操作的,可以通过暴露一些方法来访问和操作,比如说上面例子里面的getHello
和writeHello
2个方法,这就是所谓的Closures。
同时,不同模块之间的引用也可以通过参数的形式来传递:
// x.js
// @require greeting.js
var x = (function(greeting) {
var module = {};
module.writeHello = function(lang) {
document.write(greeting.getHello(lang));
};
return module;
})(greeting);
此外使用IIFE,还有2个好处:
- 提高性能:通过IIFE的参数传递常用全局对象window、document,在作用域内引用这些全局对象。JavaScript解释器首先在作用域内查找属性,然后一直沿着链向上查找,直到全局范围,因此将全局对象放在IIFE作用域内可以提升js解释器的查找速度和性能;
- 压缩空间:通过参数传递全局对象,压缩时可以将这些全局对象匿名为一个更加精简的变量名;
在那个年代,除了这种解决思路以外,还有通过其它语言的协助来完成模块化的解决思路,比如说模版依赖定义、注释依赖定义、外部依赖定义等等,不过不常见,所以就不细说了,究其本源,它们想最终实现的方式都差不多。
不过,这些方案,虽然解决了依赖关系的问题,但是没有解决如何管理这些模块,或者说在使用时清晰描述出依赖关系,这点还是没有被解决,可以说是少了一个管理者。
没有管理者的时候,在实际项目中,得手动管理第三方的库和项目封装的模块,就像下面这样把所有需要的JS文件一个个按照依赖的顺序加载进来:
<script src="zepto.js"></script>
<script src="jhash.js"></script>
<script src="fastClick.js"></script>
<script src="iScroll.js"></script>
<script src="underscore.js"></script>
<script src="handlebar.js"></script>
<script src="datacenter.js"></script>
<script src="deferred.js"></script>
<script src="util/wxbridge.js"></script>
<script src="util/login.js"></script>
<script src="util/base.js"></script>
<script src="util/city.js"></script>
如果页面中使用的模块数量越来越多,恐怕再有经验的工程师也很难维护好它们之间的依赖关系了。
于是如LABjs之类的加载工具就横空出世了,通过使用它的API,动态创建<script>
,从而达到控制JS文件加载以及执行顺序的目的,在一定的程度上解决了依赖关系,例如:
$LAB.script("greeting.js").wait()
.script("x.js")
.script("y.js").wait()
.script("run.js");
不过LABjs之类的加载工具是建立在以文件为单位的基础之上的,但是JS中的模块又不一定必须是文件,同一个文件中可以声明多个模块,YUI作为昔日前端领域的佼佼者,很好的糅合了命名空间模式及沙箱模式,下面来一睹它的风采:
// YUI - 编写模块
YUI.add('dom', function(Y) {
Y.DOM = { ... }
})
// YUI - 使用模块
YUI().use('dom', function(Y) {
Y.DOM.doSomeThing();
// use some methods DOM attach to Y
})
// hello.js
YUI.add('hello', function(Y){
Y.sayHello = function(msg){
Y.DOM.set(el, 'innerHTML', 'Hello!');
}
},'3.0.0',{
requires:['dom']
})
// main.js
YUI().use('hello', function(Y){
Y.sayHello("hey yui loader");
})
此外,YUI团队还提供的一系列用于JS压缩、混淆、请求合并(合并资源需要server端配合)等性能优化的工具,说其是现有JS模块化的鼻祖一点都不过分。
不过,随着Node.js的到来,CommonJS规范的落地以及各种前端工具、解决方案的出现,很快,YUI3就被湮没在了历史的长流里面,这样成为了JS模块化开发的一个分水岭,引用一段描述:
从 1999 年开始,模块化探索都是基于语言层面的优化,真正的革命从 2009 年 CommonJS 的引入开始,前端开始大量使用预编译。
CommonJS是一套同步的方案,它考虑的是在服务端运行的Node.js,主要是通过require
来加载依赖项,通过exports
或者module.exports
来暴露接口或者数据的方式,想了解更多,可以看一下《CommonJS规范》,下面举个简单的例子:
var math = require('math');
esports.result = math.add(2,3); // 5
由于服务器上通过require
加载资源是直接读取文件的,因此中间所需的时间可以忽略不计,但是在浏览器这种需要依赖HTTP获取资源的就不行了,资源的获取所需的时间不确定,这就导致必须使用异步机制,代表主要有2个:
它们分别在浏览器实现了define
、require
及module
的核心功能,虽然两者的目标是一致的,但是实现的方式或者说是思路,还是有些区别的,AMD偏向于依赖前置,CMD偏向于用到时才运行的思路,从而导致了依赖项的加载和运行时间点会不同,关于这2者的比较,网上有很多了,这里推荐几篇仅供参考:
本人就先接触了SeaJS后转到RequireJS,虽然感觉AMD的模式写确实没有CMD这么符合一惯的语义逻辑,但是写了几个模块以后就习惯了,而且社区资源比较丰富的AMD阵营更加符合当时的项目需求(扯多了),下面分别写个例子做下直观的对比:
// CMD
define(function (require) {
var a = require('./a'); // <- 运行到此处才开始加载并运行模块a
var b = require('./b'); // <- 运行到此处才开始加载并运行模块b
// more code ..
})
// AMD
define(
['./a', './b'], // <- 前置声明,也就是在主体运行前就已经加载并运行了模块a和模块b
function (a, b) {
// more code ..
}
)
通过例子,你可以看到除了语法上面的区别,这2者主要的差异还是在于:
何时加载和运行依赖项?
这也是CommonJS社区中质疑AMD最主要原因之一,不少人认为它破坏了规范,反观CMD模式,简单的去除define
的外包装,这就是标准的CommonJS实现,所以说CMD是最贴近CommonJS的异步模块化方案,不过孰优孰劣,这里就不扯了,需求决定一切。
此外同一时期还出现了一个UMD的方案,其实它就是AMD与CommonJS的集合体,通过IIFE的前置条件判断,使一个模块既可以在浏览器运行,也可以在Node.JS中运行,举个例子:
// UMD
(function(define) {
define(function () {
var helloInLang = {
en: 'Hello world!',
es: '¡Hola mundo!',
ru: 'Привет мир!'
};
return {
sayHello: function (lang) {
return helloInLang[lang];
}
};
});
}(
typeof module === 'object' && module.exports && typeof define !== 'function' ?
function (factory) { module.exports = factory(); } :
define
));
个人觉得最少用到的就是这个UMD模式了。
2015年6月,ECMAScript2015也就是ES6发布了,JavaScript终于在语言标准的层面上,实现了模块功能,使得在编译时就能确定模块的依赖关系,以及其输入和输出的变量,不像 CommonJS、AMD之类的需要在运行时才能确定(例如FIS这样的工具只能预处理依赖关系,本质上还是运行时解析),成为浏览器和服务器通用的模块解决方案。
// lib/greeting.js
const helloInLang = {
en: 'Hello world!',
es: '¡Hola mundo!',
ru: 'Привет мир!'
};
export const getHello = (lang) => (
helloInLang[lang];
);
export const sayHello = (lang) => {
console.log(getHello(lang));
};
// hello.js
import { sayHello } from './lib/greeting';
sayHello('ru');
与CommonJS用require()
方法加载模块不同,在ES6中,import
命令可以具体指定加载模块中用export
命令暴露的接口(不指定具体的接口,默认加载export default
),没有指定的是不会加载的,因此会在编译时就完成模块的加载,这种加载方式称为编译时加载或者静态加载。
而CommonJS的require()
方法是在运行时才加载的:
// lib/greeting.js
const helloInLang = {
en: 'Hello world!',
es: '¡Hola mundo!',
ru: 'Привет мир!'
};
const getHello = function (lang) {
return helloInLang[lang];
};
exports.getHello = getHello;
exports.sayHello = function (lang) {
console.log(getHello(lang))
};
// hello.js
const sayHello = require('./lib/greeting').sayHello;
sayHello('ru');
可以看出,CommonJS中是将整个模块作为一个对象引入,然后再获取这个对象上的某个属性。
因此ES6的编译时加载,在效率上面会提高不少,此外,还会带来一些其它的好处,比如引入宏(macro)和类型检验(type system)这些只能靠静态分析实现的功能。
可惜的是,目前浏览器和Node.js的支持程度都并不理想,截止发稿,也就只有 Chrome61+ 与 Safari10.1+ 才做到了部分支持。
不过可以通过Babel这类工具配合相关的plugin(可以参考《Babel笔记》),转换为ES5的语法,这样就可以在Node.js运行起来了,如果想在浏览器上运行,可以添加Babel配置,为模块文件添上AMD的define
函数作为外层,再并配合RequireJS之类的加载器即可。
更多关于ES6 Modules的资料,可以看一下《ECMAScript 6 入门 - Module 的语法》。
参考
- 精读 js 模块化发展
- History of JavaScript
- JavaScript 模块化七日谈
- JavaScript Module Pattern: In-Depth
- 前端模块化开发那点历史
- JavaScript Modules: A Beginner’s Guide
本文先发布于我的个人博客《JavaScript模块化开发的演进历程》,后续如有更新,可以查看原文。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。