k邻近算法实例额(一)
改进约会网站的配对效果
应用背景:
某约会网站收集了一些数据放在datingTestSet.txt中,每个样本数据占据一行,总共有1000行。样本主要包含以下3种特征:
□ 每年获得的飞行常客里程数
□ 玩视频游戏所耗时间百分比
□ 每周消费的冰淇淋公升数
在将上述特征数据输人到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式 。在kNN.py中创建名为file2matrix的函数,以此来处理输人格式问题。该函数的输人为文件名字符串输出为训练样本矩阵和类标签向量。
转换数据生成数据集
在kNN.py 中添加下面的函数:
def file2matrix(filename):
# 打开文件
fr = open(filename)
# 逐行读取
arrayOLines = fr.readlines()
# 获取总函数
numberOfLines = len(arrayOLines)
# 初始化矩阵
returnMat = zeros((numberOfLines,3))
# 初始化标签数组
classLabelVector = []
index = 0
for line in arrayOLines:
# 头尾部格式化
line = line.strip()
# 根据tab切分
listFromLine = line.split('\t')
# 矩阵单行赋予元素
returnMat[index, :] = listFromLine[0:3]
# 标签数据赋值
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
进入终端:
使用Matplotlib分析数据
使用Matplotlib创建数据集的散点图, 进入终端:
得到绘图:
如上图散点图使用矩阵的第二、第三列数据,分别表示特征值“玩视频游戏所耗时间百分比”(x轴)和 “每周所消费的冰淇淋公升数”(y轴)
由于没有使用上各组数据等标签, 所以我们很难从上图看出有用的信息,Matplotlib库提供了scatter函数支持个性化标记散点图上的点, 所以我们重新进入终端:
获得新的绘图:
未完待续·····
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。