在上一篇对python并发编程的理解 中,我简单提到了协程的概念,有一个错误需要指出的是,asyncio不全是对协程的实现,只是用到了协程。

协程的历史说来话长,要从生成器开始讲起。

如果你看过我之前的文章python奇遇记:迭代器和生成器 ,对生成器的概念应该很了解。生成器节省内存,用的时候才生成结果。

# 生成器表达式
a = (x*x for x in range(10))

# next生成值
next(a()) # 输出0
next(a()) # 输出1
next(a()) # 输出4

与生成器产出数据不同的是,协程在产出数据的同时还可以接收数据,具体来说就是把yield 放在了表达式的右边。我们可以使用.send() 把数据发送给协程函数。

 def writer():
    print('-> coroutine started')
    for i in range(8):
        w = yield
        print(i+w)

w = writer()
# 本质还是生成器
>>> w
<generator object writer at 0x000002595BC57468>
# 首先要用next()把协程激活
>>> next(w)
-> coroutine started
# 发送数据
>>> w.send(1)
1
# send到第八次之后会抛出异常
# 因为协程已经结束了
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)

第一步必须使用next() 激活协程函数,这样才能在下一步使用.send() 发送数据。

可以看到,在第8次接收完数据之后,会产生结束的异常,因为程序流程结束了,这是正常现象。加个异常处理即可。如果需要在两个协程间传递数据呢?

def writer():
    while True:
        w = yield
        print('>>', w)

def writer_wrapper(coro):
    # 激活
    next(coro)
    while True:
        # 异常处理
        try:
            x = yield
            # 发送数据给writer
            coro.send(x)
        except StopIteration:
            pass
w = writer()
wrap = writer_wrapper(w)
# 激活
next(wrap)
for i in range(4):
    wrap.send(i)
# 输出
>> 0
>> 1
>> 2
>> 3

上面的代码中,数据首先传递到writer_wrapper,之后再传递到writer

data——>writer_wrapper——>writer

可以这么写,不过,又要预先激活,又要加异常,看起来有点麻烦啊。yield from 的出现可以解决这个问题,同样是传递数据:

def writer():
    while True:
        w = yield
        print('>>', w)
        
def writer_wrapper2(coro):
    yield from coro

一行代码解决问题。

总之,yield from相当于提供了一个通道,使得数据可以在协程之间流转writer_wrapper2 中使用yield from coro时,coro此时获得控制权,在我们.send() 数据时,writer_wrapper2 被阻塞,直到writer 打印出结果。

在这个阶段,协程本质上还是由生成器构成的。

but,

即使我们使用yield from 简化了流程,协程和生成器的知识理解起来还是有点懵逼,而且yield from 用在异步编程中有诸多不顺(asyncio以前就是用yield from),于是在3.5版本的python中,弃用了yield from ,新加入了两个关键字asyncawait ,同时协程不再是生成器类型,而是原生的协程类型。

现在我们定义一个协程要像下面这样:

async def func():
    await 'some code'

不用于异步的协程该怎么用,我还不知道。所以,协程的介绍到这里就结束啦。


本人才疏学浅,上文中难免有些错误,还请各位品评指正。如果觉得写的还行,欢迎关注我的公众号MLGroup,讲解python和机器学习方面的知识。
图片描述


zhuzhezhe
230 声望27 粉丝

写代码,说人话,少装逼。