三对角线性方程组(tridiagonal systems of equations)
三对角线性方程组,对于熟悉数值分析的同学来说,并不陌生,它经常出现在微分方程的数值求解和三次样条函数的插值问题中。三对角线性方程组可描述为以下方程组:
$$a_{i}x_{i-1}+b_{i}x_{i}+c_{i}x_{i+1}=d_{i}$$
其中$1\leq i \leq n, a_{1}=0, c_{n}=0.$ 以上方程组写成矩阵形式为$Ax=d$,即:
$$ {\begin{bmatrix} {b_{1}}&{c_{1}}&{}&{}&{0}\\ {a_{2}}&{b_{2}}&{c_{2}}&{}&{}\\ {}&{a_{3}}&{b_{3}}&\ddots &{}\\ {}&{}&\ddots &\ddots &{c_{n-1}}\\ {0}&&&{a_{n}}&{b_{n}}\\ \end{bmatrix}} {\begin{bmatrix}{x_{1}}\\{x_{2}}\\{x_{3}}\\\vdots \\{x_{n}}\\\end{bmatrix}}={\begin{bmatrix}{d_{1}}\\{d_{2}}\\{d_{3}}\\\vdots \\{d_{n}}\\\end{bmatrix}} $$
三对角线性方程组的求解采用追赶法或者Thomas算法,它是Gauss消去法在三对角线性方程组这种特殊情形下的应用,因此,主要思想还是Gauss消去法,只是会更加简单些。我们将在下面的算法详述中给出该算法的具体求解过程。
当然,该算法并不总是稳定的,但当系数矩阵$A$为严格对角占优矩阵(Strictly D iagonally Dominant, SDD)或对称正定矩阵(Symmetric Positive Definite, SPD)时,该算法稳定。对于不熟悉SDD或者SPD的读者,也不必担心,我们还会在我们的博客中介绍这类矩阵。现在,我们只要记住,该算法对于部分系数矩阵$A$是可以求解的。
算法详述
追赶法或者Thomas算法的具体步骤如下:
1.创建新系数$c_{i}^{*}$和$d_{i}^{*}$来代替原先的$a_{i},b_{i},c_{i}$,公式如下:
$$ c^{*}_i = \left\{ \begin{array}{lr} \frac{c_1}{b_1} & ; i = 1\\ \frac{c_i}{b_i - a_i c^{*}_{i-1}} & ; i = 2,3,...,n-1 \end{array} \right.\\ d^{*}_i = \left\{ \begin{array}{lr} \frac{d_1}{b_1} & ; i = 1\\ \frac{d_i- a_i d^{*}_{i-1}}{b_i - a_i c^{*}_{i-1}} & ; i = 2,3,...,n-1 \end{array} \right. $$
2.改写原先的方程组$Ax=d$如下:
$$ \begin{bmatrix} 1 & c^{*}_1 & 0 & 0 & ... & 0 \\ 0 & 1 & c^{*}_2 & 0 & ... & 0 \\ 0 & 0 & 1 & c^{*}_3 & 0 & 0 \\ . & . & & & & . \\ . & . & & & & . \\ . & . & & & & c^{*}_{n-1} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ .\\ .\\ .\\ x_k \\ \end{bmatrix} = \begin{bmatrix} d^{*}_1 \\ d^{*}_2 \\ d^{*}_3 \\ .\\ .\\ .\\ d^{*}_n \\ \end{bmatrix} $$
3.计算解向量$x$,如下:
$$ x_n = d^{*}_n, \qquad x_i = d^{*}_i - c^{*}_i x_{i+1}, \qquad i = n-1, n-2, ... ,2,1$$
以上算法得到的解向量$x$即为原方程$Ax=d$的解。
下面,我们来证明该算法的正确性,只需要证明该算法保持原方程组的形式不变。
首先,当$i=1$时,
$$1*x_{1}+c_{1}^{*}x_{2}=d_{1}^{*} \Leftrightarrow 1*x_{1}+\frac{c_{1}}{b_{1}}x_{2}=\frac{d_{1}}{b_{1}}\Leftrightarrow b_{1}*x_{1}+c_{1}x_{2}=d_{1}$$
当$i>1$时,
$$ 1*x_{i}+c_{i}^{*}x_{i+1}=d_{i}^{*} \Leftrightarrow 1*x_{i}+\frac{c_{i}}{b_{i} - a_{i} c^{*}_{i-1}}x_{i+1}=\frac{d_{i}- a_{i} d^{*}_{i-1}}{b_{i} - a_{i} c^{*}_{i-1}} \Leftrightarrow (b_{i} - a_{i} c^{*}_{i-1})x_{i}+c_{i}x_{i+1}=d_{i}- a_{i} d^{*}_{i-1} $$
结合$a_{i}x_{i-1}+b_{i}x_{i}+c_{i}x_{i+1}=d_{i}$,只需要证明$x_{i-1}+c_{i-1}^{*}x_{i}=d_{i-1}^{*}$,而这已经在该算法的第(3)步的中的计算$x_{i-1}$中给出。证明完毕。
Python实现
我们将要求解的线性方程组如下:
$$ {\begin{bmatrix} 4&1&{0}&{0}&{0}\\ {1}&{4}&{1}&{0}&{0}\\ {0}&{1}&{4}&{1}&{0}\\ {0}&{0}&{1}&{4}&{1}\\ {0}&{0}&{0}&{1}&{4}\\ \end{bmatrix}} {\begin{bmatrix}{x_{1}}\\{x_{2}}\\{x_{3}}\\{x_{4}} \\{x_{5}}\\\end{bmatrix}}={\begin{bmatrix}{1\\0.5\\ -1\\3\\2}\\\end{bmatrix}} $$
接下来,我们将用Python来实现该算法,函数为TDMA,输入参数为列表a,b,c,d, 输出为解向量x,代码如下:
# use Thomas Method to solve tridiagonal linear equation
# algorithm reference: https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
import numpy as np
# parameter: a,b,c,d are list-like of same length
# tridiagonal linear equation: Ax=d
# b: main diagonal of matrix A
# a: main diagonal below of matrix A
# c: main diagonal upper of matrix A
# d: Ax=d
# return: x(type=list), the solution of Ax=d
def TDMA(a,b,c,d):
try:
n = len(d) # order of tridiagonal square matrix
# use a,b,c to create matrix A, which is not necessary in the algorithm
A = np.array([[0]*n]*n, dtype='float64')
for i in range(n):
A[i,i] = b[i]
if i > 0:
A[i, i-1] = a[i]
if i < n-1:
A[i, i+1] = c[i]
# new list of modified coefficients
c_1 = [0]*n
d_1 = [0]*n
for i in range(n):
if not i:
c_1[i] = c[i]/b[i]
d_1[i] = d[i] / b[i]
else:
c_1[i] = c[i]/(b[i]-c_1[i-1]*a[i])
d_1[i] = (d[i]-d_1[i-1]*a[i])/(b[i]-c_1[i-1] * a[i])
# x: solution of Ax=d
x = [0]*n
for i in range(n-1, -1, -1):
if i == n-1:
x[i] = d_1[i]
else:
x[i] = d_1[i]-c_1[i]*x[i+1]
x = [round(_, 4) for _ in x]
return x
except Exception as e:
return e
def main():
a = [0, 1, 1, 1, 1]
b = [4, 4, 4, 4, 4]
c = [1, 1, 1, 1, 0]
d = [1, 0.5, -1, 3, 2]
'''
a = [0, 2, 1, 3]
b = [1, 1, 2, 1]
c = [2, 3, 0.5, 0]
d = [2, -1, 1, 3]
'''
x = TDMA(a, b, c, d)
print('The solution is %s'%x)
main()
运行该程序,输出结果为:
The solution is [0.2, 0.2, -0.5, 0.8, 0.3]
本算法的Github地址为: https://github.com/percent4/N... .
最后再次声明,追赶法或者Thomas算法并不是对所有的三对角矩阵都是有效的,只是部分三对角矩阵可行。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。