5.1. 字符串对象

字符串对象是“变长对象”。

5.1.1. Python中的创建

Python中字符串(strs)对象最重要的创建方法为PyUnicode_DecodeUTF8Stateful,如下Python语句最终会调用到PyUnicode_DecodeUTF8Stateful:

a = 'hello
b = str('world')

5.1.2. PyUnicode_DecodeUTF8Stateful的C调用栈

词法解析,最终调到PyUnicode_DecodeUTF8Stateful,调用顺序如下:

// ast.c
ast_for_expr
=>ast_for_power
=>ast_for_atom_expr
=>ast_for_atom (case STRING)
=>parsestrplus
=>parsestr

// unicodeobject.c
=> PyUnicode_DecodeUTF8Stateful

5.1.3. PyUnicode_DecodeUTF8Stateful源码

// unicodeobject.c
PyObject *
PyUnicode_DecodeUTF8Stateful(const char *s,
                             Py_ssize_t size,
                             const char *errors,
                             Py_ssize_t *consumed)
{
    _PyUnicodeWriter writer;
    const char *starts = s;
    const char *end = s + size;

    Py_ssize_t startinpos;
    Py_ssize_t endinpos;
    const char *errmsg = "";
    PyObject *error_handler_obj = NULL;
    PyObject *exc = NULL;
    _Py_error_handler error_handler = _Py_ERROR_UNKNOWN;

    if (size == 0) {
        if (consumed)
            *consumed = 0;
        _Py_RETURN_UNICODE_EMPTY();
    }

    /* ASCII is equivalent to the first 128 ordinals in Unicode. */
    if (size == 1 && (unsigned char)s[0] < 128) {
        if (consumed)
            *consumed = 1;
        return get_latin1_char((unsigned char)s[0]);
    }

    _PyUnicodeWriter_Init(&writer);
    writer.min_length = size;
    if (_PyUnicodeWriter_Prepare(&writer, writer.min_length, 127) == -1)
        goto onError;

    writer.pos = ascii_decode(s, end, writer.data);
    s += writer.pos;
    while (s < end) {
        // ascii解码后的size小于传入的size
    }

End:
    if (consumed)
        *consumed = s - starts;

    Py_XDECREF(error_handler_obj);
    Py_XDECREF(exc);
    return _PyUnicodeWriter_Finish(&writer);

onError:
    Py_XDECREF(error_handler_obj);
    Py_XDECREF(exc);
    _PyUnicodeWriter_Dealloc(&writer);
    return NULL;
}

可以看到:

  • 空串缓存:空串(unicode_empty)为同一个地址,第二次需要空串时,只是将计数加1,在_PyUnicodeWriter_Finish中实现空串缓存。
// unicodeobject.c
static PyObject *unicode_empty = NULL;

#define _Py_INCREF_UNICODE_EMPTY()                      \
    do {                                                \
        if (unicode_empty != NULL)                      \
            Py_INCREF(unicode_empty);                   \
        else {                                          \
            unicode_empty = PyUnicode_New(0, 0);        \
            if (unicode_empty != NULL) {                \
                Py_INCREF(unicode_empty);               \
                assert(_PyUnicode_CheckConsistency(unicode_empty, 1)); \
            }                                           \
        }                                               \
    } while (0)

#define _Py_RETURN_UNICODE_EMPTY()                      \
    do {                                                \
        _Py_INCREF_UNICODE_EMPTY();                     \
        return unicode_empty;                           \
    } while (0)

// PyUnicode_DecodeUTF8Stateful->
// _PyUnicodeWriter_Finish->
// unicode_result_ready
static PyObject*
unicode_result_ready(PyObject *unicode)
{
    Py_ssize_t length;

    length = PyUnicode_GET_LENGTH(unicode);
    if (length == 0) {
        if (unicode != unicode_empty) {
            Py_DECREF(unicode);
            _Py_RETURN_UNICODE_EMPTY();
        }
        return unicode_empty;
    }

    if (length == 1) {
        void *data = PyUnicode_DATA(unicode);
        int kind = PyUnicode_KIND(unicode);
        Py_UCS4 ch = PyUnicode_READ(kind, data, 0);
        if (ch < 256) {
            PyObject *latin1_char = unicode_latin1[ch];
            if (latin1_char != NULL) {
                if (unicode != latin1_char) {
                    Py_INCREF(latin1_char);
                    Py_DECREF(unicode);
                }
                return latin1_char;
            }
            else {
                assert(_PyUnicode_CheckConsistency(unicode, 1));
                Py_INCREF(unicode);
                unicode_latin1[ch] = unicode;
                return unicode;
            }
        }
    }

    assert(_PyUnicode_CheckConsistency(unicode, 1));
    return unicode;
}
  • 字符缓冲池:字符(unicode_latin1)为同一个地址,第二次需要该字符时,只是将计数加1,在get_latin1_char中实现字符缓存。
// unicodeobject.c
static PyObject *unicode_latin1[256] = {NULL};

PyObject *
PyUnicode_DecodeUTF8Stateful(const char *s,
                             Py_ssize_t size,
                             const char *errors,
                             Py_ssize_t *consumed)
{
      // do sth.

    /* ASCII is equivalent to the first 128 ordinals in Unicode. */
    if (size == 1 && (unsigned char)s[0] < 128) {
        if (consumed)
            *consumed = 1;
        return get_latin1_char((unsigned char)s[0]);
    }

      // do sth.
}

static PyObject*
get_latin1_char(unsigned char ch)
{
    PyObject *unicode = unicode_latin1[ch];
    if (!unicode) {
        unicode = PyUnicode_New(1, ch);
        if (!unicode)
            return NULL;
        PyUnicode_1BYTE_DATA(unicode)[0] = ch;
        assert(_PyUnicode_CheckConsistency(unicode, 1));
        unicode_latin1[ch] = unicode;
    }
    Py_INCREF(unicode);
    return unicode;
}

5.2. 常量字符串池

a = 'hello'
b = 'hello'
a is b  #True

由上例可以看出Python对常量字符串做了缓存。缓存的关键性实现在PyUnicode_InternInPlace方法中。

5.2.1. PyUnicode_InternInPlace的C调用堆栈

// compile.c
assemble
=>makecode
// codeobject.c
=>PyCode_New
=>intern_string_constants
// unicodeobject.c
=>PyUnicode_InternInPlace

5.2.2. PyUnicode_InternInPlace源码

// unicodeobject.c
static PyObject *interned = NULL;

void
PyUnicode_InternInPlace(PyObject **p)
{
    PyObject *s = *p;
    PyObject *t;
#ifdef Py_DEBUG
    assert(s != NULL);
    assert(_PyUnicode_CHECK(s));
#else
    if (s == NULL || !PyUnicode_Check(s))
        return;
#endif
    /* If it's a subclass, we don't really know what putting
       it in the interned dict might do. */
    if (!PyUnicode_CheckExact(s))
        return;
    if (PyUnicode_CHECK_INTERNED(s))
        return;
    if (interned == NULL) {
        interned = PyDict_New();
        if (interned == NULL) {
            PyErr_Clear(); /* Don't leave an exception */
            return;
        }
    }
    Py_ALLOW_RECURSION
    t = PyDict_SetDefault(interned, s, s);
    Py_END_ALLOW_RECURSION
    if (t == NULL) {
        PyErr_Clear();
        return;
    }
    if (t != s) {
        Py_INCREF(t);
        Py_SETREF(*p, t);
        return;
    }
    /* The two references in interned are not counted by refcnt.
       The deallocator will take care of this */
    Py_REFCNT(s) -= 2;
    _PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL;
}

其中最关键的方法为PyDict_SetDefault,该方法存在于字典对象dictobject.c中。如果没有相同的key(此处为s),则返回defaultobject(此处也为s),否则如果有相同的key则返回对应的value。所以如果t与s不同,则说明字典中有相应的key,此时将t的计数加1,并且将之前常量字符串的对象指向t。

如此一来,常量字符串的对象地址就一致了,此时s的计数会被消除,如果s的计数为0,则会被释放。值得注意的是,常量字符串的对象每次仍旧会被多分配一次内存,只是如果之前有分配过,且如果此次分配的对象计数为0,则会被释放。

有些情况下(字符串包含非0-9a-zA-Z)不会放到字典里,这时候可以通过sys.intern进行性能优化:

import sys
a = '啊'
b = '啊'
a is b    # False

a = sys.intern('啊')
b = sys.intern('啊')
a is b    # True

具体可以参考:memory - What does python sys.intern do, and when should it be used? - Stack Overflow

5.3. 字符串对象的特性

支持tp_as_number、tp_as_sequence、tp_as_mapping这三种操作。

5.3.1. 数值操作

// unicodeobject.c
&unicode_as_number,                         /* tp_as_number */

5.3.2. 序列操作

// unicodeobject.c
&unicode_as_sequence,                     /* tp_as_sequence */
// unicodeobject.c
static PySequenceMethods unicode_as_sequence = {
    (lenfunc) unicode_length,       /* sq_length */
    PyUnicode_Concat,           /* sq_concat */
    (ssizeargfunc) unicode_repeat,  /* sq_repeat */
    (ssizeargfunc) unicode_getitem,     /* sq_item */
    0,                  /* sq_slice */
    0,                  /* sq_ass_item */
    0,                  /* sq_ass_slice */
    PyUnicode_Contains,         /* sq_contains */
};

因为没有实现PySequenceMethods中的设置方法,所以字符串不可变。

其中:

  • unicode_length
len('hello')
  • PyUnicode_Concat
'hello' + 'wolrd'

多个字符串相加效率低于join,join只分配一次内存;

  • unicode_repeat
'hello'*10

效率要高于同个字符串相加;

  • unicode_getitem:暂时没有找到相应Python语句;
  • PyUnicode_Contains
'h' in 'hello'

5.3.3. 关联操作

// unicodeobject.c
&unicode_as_mapping,                        /* tp_as_mapping */
// unicodeobject.c
static PyMappingMethods unicode_as_mapping = {
    (lenfunc)unicode_length,        /* mp_length */
    (binaryfunc)unicode_subscript,  /* mp_subscript */
    (objobjargproc)0,           /* mp_ass_subscript */
};

其中:

  • unicode_subscript
test = 'hello world'
test[1]
test[0:5]

test[1]会走unicode_subscript方法的index分支,test[0:5]会走slice分支;

5.3.4. to string

// unicodeobject.c
unicode_repr,                                   /* tp_repr */
(reprfunc) unicode_str,                         /* tp_str */

5.3.5. hash

// unicodeobject.c
(hashfunc) unicode_hash,                        /* tp_hash*/

5.3.6. 比较

// unicodeobject.c
PyUnicode_RichCompare,                      /* tp_richcompare */

5.3.7. 内置方法

// unicodeobject.c
unicode_methods,                              /* tp_methods */

5.4 参考

  • Python源码剖析

本文作者:whj0709
阅读原文
本文为云栖社区原创内容,未经允许不得转载。


数据库知识分享者
27.8k 声望35.7k 粉丝

数据库知识分享