1

本文主要研究下spring cloud gateway的RedisRateLimiter

GatewayRedisAutoConfiguration

spring-cloud-gateway-core-2.0.0.RELEASE-sources.jar!/org/springframework/cloud/gateway/config/GatewayRedisAutoConfiguration.java

@Configuration
@AutoConfigureAfter(RedisReactiveAutoConfiguration.class)
@AutoConfigureBefore(GatewayAutoConfiguration.class)
@ConditionalOnBean(ReactiveRedisTemplate.class)
@ConditionalOnClass({RedisTemplate.class, DispatcherHandler.class})
class GatewayRedisAutoConfiguration {

    @Bean
    @SuppressWarnings("unchecked")
    public RedisScript redisRequestRateLimiterScript() {
        DefaultRedisScript redisScript = new DefaultRedisScript<>();
        redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("META-INF/scripts/request_rate_limiter.lua")));
        redisScript.setResultType(List.class);
        return redisScript;
    }

    @Bean
    //TODO: replace with ReactiveStringRedisTemplate in future
    public ReactiveRedisTemplate<String, String> stringReactiveRedisTemplate(
            ReactiveRedisConnectionFactory reactiveRedisConnectionFactory) {
        RedisSerializer<String> serializer = new StringRedisSerializer();
        RedisSerializationContext<String , String> serializationContext = RedisSerializationContext
                .<String, String>newSerializationContext()
                .key(serializer)
                .value(serializer)
                .hashKey(serializer)
                .hashValue(serializer)
                .build();
        return new ReactiveRedisTemplate<>(reactiveRedisConnectionFactory,
                serializationContext);
    }

    @Bean
    @ConditionalOnMissingBean
    public RedisRateLimiter redisRateLimiter(ReactiveRedisTemplate<String, String> redisTemplate,
                                             @Qualifier(RedisRateLimiter.REDIS_SCRIPT_NAME) RedisScript<List<Long>> redisScript,
                                             Validator validator) {
        return new RedisRateLimiter(redisTemplate, redisScript, validator);
    }
}
这里创建了3个bean,分别是RedisScript、ReactiveRedisTemplate、RedisRateLimiter

RedisRateLimiter

spring-cloud-gateway-core-2.0.0.RELEASE-sources.jar!/org/springframework/cloud/gateway/filter/ratelimit/RedisRateLimiter.java

@ConfigurationProperties("spring.cloud.gateway.redis-rate-limiter")
public class RedisRateLimiter extends AbstractRateLimiter<RedisRateLimiter.Config> implements ApplicationContextAware {
    //......

    public static final String CONFIGURATION_PROPERTY_NAME = "redis-rate-limiter";
    public static final String REDIS_SCRIPT_NAME = "redisRequestRateLimiterScript";
    public static final String REMAINING_HEADER = "X-RateLimit-Remaining";
    public static final String REPLENISH_RATE_HEADER = "X-RateLimit-Replenish-Rate";
    public static final String BURST_CAPACITY_HEADER = "X-RateLimit-Burst-Capacity";

    //......

    public RedisRateLimiter(ReactiveRedisTemplate<String, String> redisTemplate,
                            RedisScript<List<Long>> script, Validator validator) {
        super(Config.class, CONFIGURATION_PROPERTY_NAME, validator);
        this.redisTemplate = redisTemplate;
        this.script = script;
        initialized.compareAndSet(false, true);
    }

    public RedisRateLimiter(int defaultReplenishRate, int defaultBurstCapacity) {
        super(Config.class, CONFIGURATION_PROPERTY_NAME, null);
        this.defaultConfig = new Config()
                .setReplenishRate(defaultReplenishRate)
                .setBurstCapacity(defaultBurstCapacity);
    }

    //......

    @Override
    @SuppressWarnings("unchecked")
    public void setApplicationContext(ApplicationContext context) throws BeansException {
        if (initialized.compareAndSet(false, true)) {
            this.redisTemplate = context.getBean("stringReactiveRedisTemplate", ReactiveRedisTemplate.class);
            this.script = context.getBean(REDIS_SCRIPT_NAME, RedisScript.class);
            if (context.getBeanNamesForType(Validator.class).length > 0) {
                this.setValidator(context.getBean(Validator.class));
            }
        }
    }

    /* for testing */ Config getDefaultConfig() {
        return defaultConfig;
    }

    /**
     * This uses a basic token bucket algorithm and relies on the fact that Redis scripts
     * execute atomically. No other operations can run between fetching the count and
     * writing the new count.
     */
    @Override
    @SuppressWarnings("unchecked")
    public Mono<Response> isAllowed(String routeId, String id) {
        if (!this.initialized.get()) {
            throw new IllegalStateException("RedisRateLimiter is not initialized");
        }

        Config routeConfig = getConfig().getOrDefault(routeId, defaultConfig);

        if (routeConfig == null) {
            throw new IllegalArgumentException("No Configuration found for route " + routeId);
        }

        // How many requests per second do you want a user to be allowed to do?
        int replenishRate = routeConfig.getReplenishRate();

        // How much bursting do you want to allow?
        int burstCapacity = routeConfig.getBurstCapacity();

        try {
            List<String> keys = getKeys(id);


            // The arguments to the LUA script. time() returns unixtime in seconds.
            List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "",
                    Instant.now().getEpochSecond() + "", "1");
            // allowed, tokens_left = redis.eval(SCRIPT, keys, args)
            Flux<List<Long>> flux = this.redisTemplate.execute(this.script, keys, scriptArgs);
                    // .log("redisratelimiter", Level.FINER);
            return flux.onErrorResume(throwable -> Flux.just(Arrays.asList(1L, -1L)))
                    .reduce(new ArrayList<Long>(), (longs, l) -> {
                        longs.addAll(l);
                        return longs;
                    }) .map(results -> {
                        boolean allowed = results.get(0) == 1L;
                        Long tokensLeft = results.get(1);

                        Response response = new Response(allowed, getHeaders(routeConfig, tokensLeft));

                        if (log.isDebugEnabled()) {
                            log.debug("response: " + response);
                        }
                        return response;
                    });
        }
        catch (Exception e) {
            /*
             * We don't want a hard dependency on Redis to allow traffic. Make sure to set
             * an alert so you know if this is happening too much. Stripe's observed
             * failure rate is 0.01%.
             */
            log.error("Error determining if user allowed from redis", e);
        }
        return Mono.just(new Response(true, getHeaders(routeConfig, -1L)));
    }

    static List<String> getKeys(String id) {
        // use `{}` around keys to use Redis Key hash tags
        // this allows for using redis cluster

        // Make a unique key per user.
        String prefix = "request_rate_limiter.{" + id;

        // You need two Redis keys for Token Bucket.
        String tokenKey = prefix + "}.tokens";
        String timestampKey = prefix + "}.timestamp";
        return Arrays.asList(tokenKey, timestampKey);
    }

    //......
}
  • 在setApplicationContext,获取一下RedisScript
  • isAllowed利用redisScript去查询是否需要限制
  • tokenKey的命名为request_rate_limiter.{id}.tokens,timestampKey的命名为request_rate_limiter.{id}. timestamp

request_rate_limiter

spring-cloud-gateway-core-2.0.0.RELEASE-sources.jar!/META-INF/scripts/request_rate_limiter.lua

local tokens_key = KEYS[1]
local timestamp_key = KEYS[2]
--redis.log(redis.LOG_WARNING, "tokens_key " .. tokens_key)

local rate = tonumber(ARGV[1])
local capacity = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
local requested = tonumber(ARGV[4])

local fill_time = capacity/rate
local ttl = math.floor(fill_time*2)

--redis.log(redis.LOG_WARNING, "rate " .. ARGV[1])
--redis.log(redis.LOG_WARNING, "capacity " .. ARGV[2])
--redis.log(redis.LOG_WARNING, "now " .. ARGV[3])
--redis.log(redis.LOG_WARNING, "requested " .. ARGV[4])
--redis.log(redis.LOG_WARNING, "filltime " .. fill_time)
--redis.log(redis.LOG_WARNING, "ttl " .. ttl)

local last_tokens = tonumber(redis.call("get", tokens_key))
if last_tokens == nil then
  last_tokens = capacity
end
--redis.log(redis.LOG_WARNING, "last_tokens " .. last_tokens)

local last_refreshed = tonumber(redis.call("get", timestamp_key))
if last_refreshed == nil then
  last_refreshed = 0
end
--redis.log(redis.LOG_WARNING, "last_refreshed " .. last_refreshed)

local delta = math.max(0, now-last_refreshed)
local filled_tokens = math.min(capacity, last_tokens+(delta*rate))
local allowed = filled_tokens >= requested
local new_tokens = filled_tokens
local allowed_num = 0
if allowed then
  new_tokens = filled_tokens - requested
  allowed_num = 1
end

--redis.log(redis.LOG_WARNING, "delta " .. delta)
--redis.log(redis.LOG_WARNING, "filled_tokens " .. filled_tokens)
--redis.log(redis.LOG_WARNING, "allowed_num " .. allowed_num)
--redis.log(redis.LOG_WARNING, "new_tokens " .. new_tokens)

redis.call("setex", tokens_key, ttl, new_tokens)
redis.call("setex", timestamp_key, ttl, now)

return { allowed_num, new_tokens }
  • RedisScript使用的是request_rate_limiter.lua脚本
  • 传入的参数为replenishRate、burstCapacity、Instant.now().getEpochSecond()以及1
  • 返回值为allowed_num、new_tokens

headers

    public HashMap<String, String> getHeaders(Config config, Long tokensLeft) {
        HashMap<String, String> headers = new HashMap<>();
        headers.put(this.remainingHeader, tokensLeft.toString());
        headers.put(this.replenishRateHeader, String.valueOf(config.getReplenishRate()));
        headers.put(this.burstCapacityHeader, String.valueOf(config.getBurstCapacity()));
        return headers;
    }
RELEASE版本新增返回了rate limit相关的header:X-RateLimit-Remaining、X-RateLimit-Replenish-Rate、X-RateLimit-Burst-Capacity

小结

spring cloud gateway默认提供了一个基于redis的限流filter,需要添加依赖spring-boot-starter-data-redis-reactive才可以自动开启。该filter使用的是redisScript来进行判断,该script使用的是request_rate_limiter.lua脚本。

doc


codecraft
11.9k 声望2k 粉丝

当一个代码的工匠回首往事时,不因虚度年华而悔恨,也不因碌碌无为而羞愧,这样,当他老的时候,可以很自豪告诉世人,我曾经将代码注入生命去打造互联网的浪潮之巅,那是个很疯狂的时代,我在一波波的浪潮上留下...