1.信息与信源

信源发出的消息在未收到前是不确定的随机过程,可以用随机变量描述,或者说用一个样本空间及其概率测度来描述信源。
信源分为离散信源连续信源

  • 离散信源:可用离散型随机变量来表示,信源常记作:$X = \{x_1, ..., x_n, ...\}$ ,例如,天气预报。
    数学模型:

$$ \begin{bmatrix} x \\ p(x) \\ \end{bmatrix} = \begin{bmatrix} x_1 & ... & x_n \\ p(x_1) & ... & p(x_n) \\ \end{bmatrix} $$

其中, $0≤p(x_i)≤1, \sum p({x_i}) = 1$

  • 连续信源:可用连续型随机变量来表示。例如,电压、温度。
    数学模型:

$$ \begin{bmatrix} x \\ p(x) \\ \end{bmatrix} = \begin{bmatrix} (a,b) \\ p(x) \\ \end{bmatrix} $$

其中, $\int_{a}^{b} p(x)dx = 1$

2.自信息

2.1 自信息

信源所发出的某信息$x$所含的信息量$I(x)$(即$x$的自信息),$I(x)$应是$p(x)$的单调递减函数:
$I(x)=f[p(x)]$
自信息满足如下公理:

  1. 非负性:$I(x)>0$
  2. 若$p(x) = 0$,则$I(x) \longrightarrow \infty$
  3. 若$p(x) = 1$,则$I(x) = 0 $
  4. 严格单调性:若$p(x)>p(y)$,则$I(x)<I(y)$
  5. 若$p(x,y)=p(x)p(y)$,则$I(x,y)=I(x)+I(y)$

定义:若$x \in X$有概率$p(x),则$x$的自信息为:

$$ I(x)=\log{\frac{1}{p(x)}}=-\log p(x) $$

默认以2为底

注1:$I(x)$的两个含义

  • 当事件发生前,表示该事件发生的不确定性
  • 当事件发生后,表示该事件提供的信息量

注2:自信息量的单位与所取对数的关系

  • 以2为底——比特(bit)
  • 以$e$为底——奈特(nat)
  • 以10为底——哈特(hart)

2.2 联合自信息

定义:若$x_i,y_j$同时发生,可用联合概率$p(x_i,y_j)$来表示,数学模型:

$$ \begin{bmatrix} (x,y) \\ p(x,y) \\ \end{bmatrix} = \begin{bmatrix} (x_1,y_1) & ... & (x_i,y_j) & ... & (x_n,y_m)\\ p(x_1,y_1) & ... & p(x_i,y_j) & ... & p(x_n, y_m) \\ \end{bmatrix} $$

其中 $0≤p(x_i,y_j)≤1, \sum_{i=1}^n \sum_{j=1}^m p(x_i, y_j)=1$
$x_i,y_j$的联合信息为:

$$ I(x_i,y_j)=\log{\frac{1}{p(x_i,y_j)}}=-\log{p(x_i,y_j)} $$

注:当$x_i,y_j$相互独立时:

$$ I(x_i,y_j) = I(x_i) + I(y_j) $$

依次可往下推广。

2.3 条件自信息

定义:设在$y_j$条件下,$x_i$发生的条件概率为$p(x_i|y_j)$,则其条件自信息定义为:

$$ I(x_i,y_j) = \log{\frac{1}{p(x_i|y_j)}}=-\log{p(x_i|y_j)} $$

同理可得:

$$ I(y_j,x_i) = \log{\frac{1}{p(y_j|x_i)}}=-\log{p(y_j|x_i)} $$

2.4 互信息

定义:事件$y_j$的出现给出关于$x_i$的信息量称为互信息,即:

$$ I(x_i;y_j)=\log{\frac{p(x_i|y_j)}{p(x_i)}}=\log{\frac{1}{p(x_i)}}-\log{\frac{1}{p(x_i|y_j)}}=I(x_i)-I(x_i|y_j)=I(y_j)-I(y_j|x_i)=I(y_j;x_i) $$

上式表明,互信息量等于自信息量减去条件信息量,或者说互信息量是一种消除的不确定性的度量(事件$y_j$发生使$x_i$的不确定性减小或者事件$y_j$发生提供$x_i$的信息量)

注:

  • $I(x_i;y_j)=I(y_j;x_i)$
  • $I(x_i;y_j) = 0$,则$x_i,y_j$相互独立
  • $I(x_i;y_j)$可正可负

橙茗
26 声望5 粉丝

python c