一、ArrayList简介
ArrayList的内部实现了动态数组,提供了动态的增加和减少元素,继承AbstractList类,并且实现了List、RandomAccess、Cloneable和java.io.Serializable接口。ArrayList是一个数组队列,提供添加、删除、修改和遍历元素的功能。因为实现RandomAccess接口,提供了随机访问的功能。现了Cloneable接口,即覆盖了函数clone(),能被克隆。现java.io.Serializable接口,这意味着ArrayList支持序列化。ArrayList不是线程安全的,建议在单线程中访问。
ArrayList有三个构造方法,定义如下:
//创建给定初始化大小的ArrayList
public ArrayList(int initialCapacity) {}
//默认无参构造方法创建的ArrayList
public ArrayList() {}
//创建给定初始化集合c的ArrayList
public ArrayList(Collection<? extends E> c) {}
二、源码分析
ArrayList是通过动态数组实现的,下面通过源码分析ArrayList的实现:
1、ArrayList主要源码分析
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
/**
* 默认初始化大小
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* 空数组实例
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* 判断是否为第一次添加元素
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* ArrayList保存元素数据,通过elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA 来判断是否是第一次添加元素
*/
transient Object[] elementData;
/**
* ArrayList的实际大小
*/
private int size;
/**
* 创建大小为initialCapacity的空ArrayList
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
/**
* 创建初始化容量为10的list
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
/**
* 通过集合c创建list
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException 如果c为nulll,有空指针异常
*/
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
/**
* 缩小list容量为当前真实大小
*/
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
//外部调用方法,调整容量,确保list不会越界
public void ensureCapacity(int minCapacity) {
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
// any size if not default element table
? 0
// larger than default for default empty table. It's already
// supposed to be at default size.
: DEFAULT_CAPACITY;
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
//计算容量
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
//内部调用方法,调整容量,确保list不会越界
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
//扩展容量
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// 如果最小容量大于数组大小,进行数组扩展
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* 数组容量的最大值。部分虚拟机限制,大于MAX_ARRAY_SIZE,会导致OutOfMemoryError
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* 数组按照1.5倍增加,如果增加后的值小于minCapacity,按照minCapacity增加
*
*/
private void grow(int minCapacity) {
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 是否大于最大值
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
//如果扩展容量大于最大值,按照最大值扩展
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0)
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
/**
* 返回list实际大小
*/
public int size() {
return size;
}
/**
* 如果实际大小为0,返回true.
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 返回元素是否存在,indexOf(o)方法返回-1表示不存在.
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* 返回元素的下标,-1表示元素不存在
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 返回最后一个元素o的下标
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* copy一个list对象
*/
public Object clone() {
try {
ArrayList<?> v = (ArrayList<?>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
/**
* 将list转换为对象
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
/**
* 将list转换为对应类型的数组,如果数组大小小于size,通过Arrays.copyOf转换,如果大于System.arraycopy转换
*/
public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
//通过制定下标返回一个元素
E elementData(int index) {
return (E) elementData[index];
}
/**
* 根据下标获取元素
*
*/
public E get(int index) {
//检查是否越界
rangeCheck(index);
return elementData(index);
}
/**
* 将指定位置的元素替换,返回老的元素
*/
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
/**
* 在list中添加一个元素
*/
public boolean add(E e) {
//调整大小
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
/**
* 在指定位置添加一个元素
*/
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
//index之后的元素后移
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
/**
* 移除指定位置的元素,返回要移除的元素
*/
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
//将最后一个对象置空,便于GC
elementData[--size] = null;
return oldValue;
}
/**
* 根据指定的元素移除,调用fastRemove(index)方法
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/*
* 不检查边界的快速移除元素
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
/**
* 清除所有元素,size赋值0,
*/
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
/**
* 将集合c中的元素添加到list中
*/
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
/**
* 将集合c中的元素添加到index开始的位置,原index之后的元素后移
*/
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
/**
* 删除指定区间的元素
*/
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
/**
* 检查是否越界
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 添加时检查是否越界
*/
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 越界后返回的异常详细信息
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
/**
* 删除集合c中所有元素,首选检查c是否为空,调用batchRemove(c, false)方法
*/
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
}
/**
* 保留给定集合的元素,删除其他的
*
*/
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
/**
* 根据complement判断是删除还是保留给定的集合元素
*
*/
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
//将删除或者保留的元素移动到数据前面
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
//把w下标后的数据删除
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
/**
* 将ArrayList保存到流中
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* 从流中读取创建一个ArrayList对象
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA;
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in capacity
s.readInt(); // ignored
if (size > 0) {
// be like clone(), allocate array based upon size not capacity
int capacity = calculateCapacity(elementData, size);
SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}
/**
* 返回一个以index开始的ListIterator迭代器
*/
public ListIterator<E> listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
/**
* 返回从0开始的ListIterator迭代器
*/
public ListIterator<E> listIterator() {
return new ListItr(0);
}
/**
* 返回Iterator迭代器
*/
public Iterator<E> iterator() {
return new Itr();
}
/**
* 定义一个基于AbstractList.Itr优化后的迭代器内部类,后面详细分析
*/
private class Itr implements Iterator<E> {}
/**
* 定义一个基于 AbstractList.ListItr优化后的迭代器内部类,后面详细分析
*/
private class ListItr extends Itr implements ListIterator<E> {}
/**
*返回一个从fromIndex到toIndex的子list
*/
public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
}
//检查获取子list的fromIndex和toIndex是否越界
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
}
//子list内部类
private class SubList extends AbstractList<E> implements RandomAccess {}
@Override
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
* list.
*
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
* Overriding implementations should document the reporting of additional
* characteristic values.
*
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
@Override
public Spliterator<E> spliterator() {
return new ArrayListSpliterator<>(this, 0, -1, 0);
}
/** Index-based split-by-two, lazily initialized Spliterator */
static final class ArrayListSpliterator<E> implements Spliterator<E> { }
@Override
public boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
if (filter.test(element)) {
removeSet.set(i);
removeCount++;
}
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i);
elementData[j] = elementData[i];
}
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
this.size = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
@Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@Override
@SuppressWarnings("unchecked")
public void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
}
2、Itr和ListItr源码分析
上面分析了ArrayList源码,其中Itr和ListItr这两个内部类没有详细介绍。Itr和ListItr在AbstractList中有实现,在ArrayList对其进行了优化。下面进行详细介绍:
- Itr
Itr实现了Iterator接口,源码如下:
private class Itr implements Iterator<E> {
//下一个元素的下标
int cursor; // index of next element to return
//最后返回元素的下标,如果不存在,返回-1
int lastRet = -1;
/**
* 每个迭代器保存一个expectedModCount ,来记录这个迭代器对对象进行结构性修改的次数。
* 每次迭代器进结构性修改的时候都将expectedModCount 和modCount进行对比
* 如果两种相等则说明没有其他迭代器修改了对象,可以进行。如果不相等则说明有迭代进行了修改,立刻抛出异常
*/
int expectedModCount = modCount;
Itr() {}
//下一个元素下标不等于size,表示还有下一个元素
public boolean hasNext() {
return cursor != size;
}
//获取到下一个元素
public E next() {
//检查其他迭代器对list是否有修改
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
//移动元素
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
- ListItr
ListItr继承自Itr,并且实现了ListIterator接口,源码如下:
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
三、使用示例
1、ArrayList的四种遍历方式
jdk 1.8以前的集合list遍历支持三种方式,在1.8中增加了java 8 forEach方法,下面分别分析这四种遍历方式以及效率:
public class ArrayListIteratorTest {
public static void main(String[] args) {
List list = new ArrayList();
for (int i = 0; i < 1000000 ; i++) {
list.add(i);
}
iteratorTest(list);
foreashITest(list);
foreashTest(list);
java8ForeashTest(list);
}
/**
* 通过迭代器遍历
* @param list
*/
static void iteratorTest(List list){
long startTime;
long endTime;
startTime = System.currentTimeMillis();
Iterator iterator = list.iterator();
while (iterator.hasNext()){
iterator.next();
}
endTime = System.currentTimeMillis();
System.out.println("Iterator time :" + (endTime - startTime));
}
/**
* 通过索引遍历
* @param list
*/
static void foreashITest(List list){
long startTime;
long endTime;
startTime = System.currentTimeMillis();
for (int i = 0, length = list.size(); i < length; i++) {
list.get(i);
}
endTime = System.currentTimeMillis();
System.out.println("fori time :" + (endTime - startTime));
}
/**
* 通过foreash遍历
* @param list
*/
static void foreashTest(List list){
long startTime;
long endTime;
startTime = System.currentTimeMillis();
for (Object l: list) {
}
endTime = System.currentTimeMillis();
System.out.println("foreash time :" + (endTime - startTime));
}
/**
* 通过java 8 中提供的foreash遍历
* @param list
*/
static void java8ForeashTest(List list){
long startTime;
long endTime;
startTime = System.currentTimeMillis();
list.forEach(l->{});
endTime = System.currentTimeMillis();
System.out.println("java 8 foreash time :" + (endTime - startTime));
}
}
以上代码运行后的结果如下:
从运行结果看,foreash运行效率最高,java 8 中的foreash运行效率最差。
2、toArray()方法的使用
ArrayList中提供了连个方法将list转换为数组,分别是Object[] toArray()和<T> T[] toArray(T[] a)。调用第一个方法会有抛出“java.lang.ClassCastException”异常的情况,下面通过具体示例演示:
public class ArrayListToArraysTest {
public static void main(String[] args) {
List<Dog> list = new ArrayList<>();
Dog dog1 = new Dog();
Dog dog2 = new Dog();
list.add(dog1);
list.add(dog2);
//此处会抛出异常
Dog[] dogs1 = (Dog[]) list.toArray();
System.out.println(Arrays.toString(dogs1));
Dog[] dogs2 = new Dog[list.size()];
dogs2 = list.toArray(dogs2);
System.out.println(Arrays.toString(dogs2));
}
private static class Dog{
private String name;
private String color;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getColor() {
return color;
}
public void setColor(String color) {
this.color = color;
}
}
}
3、fail-fast机制
当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
Fail-fast示例如下:
public class ArrayListFailFastTest {
private static List list = new ArrayList();
public static void main(String[] args) {
Thread t1 = new Thread(new ThreadTest(),"t1");
Thread t2 = new Thread(new ThreadTest(), "t2");
t1.start();
t2.start();
}
private static class ThreadTest implements Runnable{
@Override
public void run() {
for (int i = 0; i < 20; i++) {
list.add(i);
}
Iterator iterator = list.iterator();
while (iterator.hasNext()){
System.out.print(iterator.next() + " ");
}
}
}
}
可以看出,在多线程下,通过iterator去遍历某集合,会抛ConcurrentModificationException异常。
四、总结
在本章中,分析了ArrayList集合。ArrayList的内部是通过动态数组存储数据的,默认初始大小是10,在jdk1.8中,默认构造方法创建对象,默认的数组为空,当第一次添加元素时,设置数组大小为10。在调整数组大小时,默认是增加原数组的1.5倍,如果传入的最小扩展数大于增加1.5倍后的大小,则按照此最小扩展数扩展,否则按照默认扩展。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。