一、LinkedList简介
LinkedList内部是通过双向链表存储的,提供顺序访问。继承了AbstractSequentialList,实现在迭代器上的随机访问。并且,还实现了List、Deque、Cloneable,Serializable。Deque是双端队列接口,继承自Queue,Queue是队列接口。LinkedList的定义如下:
public class LinkedList<E> extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable {}
数据存储的结构是链表,定义如下:
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
ArrayList提供两个构造方法,定义如下:
//默认构造方法
public LinkedList() {}
//给定初始化集合c的构造方法
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
二、源码阅读
LinkedList通过链表结构实现了双端队列、栈等数据结构,下面具体分析源码:
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
//链表大小
transient int size = 0;
/**
* 指向第一个节点指针
*/
transient Node<E> first;
/**
*指向最后一个节点的指针
*/
transient Node<E> last;
/**
* 构造一个空的list.
*/
public LinkedList() {
}
/**
* 构造一个有特定元素的list
*/
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
/**
* 添加一个元素,作为第一个节点
*/
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
/**
* 添加一个节点,作为最后一个元素
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
/**
* 在非空节点succ前插入一个元素
*/
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
/**
* 删除一个非空的first节点,将其next节点指向first,如果next节点为空,则last节点也为空
*/
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
/**
* 删除一个非空的last节点,将其prev节点指向last,如果prev节点为空,则first节点也为空
*/
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}
/**
* 删除非空节点x,将其next节点的prev节点指向其prev节点,prev节点的next节点指向其next节点
*/
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
/**
* 返回first节点,如果节点为空,抛出NoSuchElementException 异常
*/
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
/**
* 返回last节点,如果节点为空,抛出NoSuchElementException 异常
*/
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
/**
* 删除第一个节点,如果节点为空,抛出NoSuchElementException 异常
*/
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
/**
* 删除最后一个节点,如果节点为空,抛出NoSuchElementException 异常
*/
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
/**
* 在链表的头部插入节点e
*/
public void addFirst(E e) {
linkFirst(e);
}
/**
* 在链表的头部插入节点e
*/
public void addLast(E e) {
linkLast(e);
}
/**
* 返回链表中是否包含元素e
*/
public boolean contains(Object o) {
return indexOf(o) != -1;
}
/**
* 返回链表的大小
*/
public int size() {
return size;
}
/**
* 在链表尾部添加一个元素
*/
public boolean add(E e) {
linkLast(e);
return true;
}
/**
* 从头部遍历,移除链表中第一个o元素
*/
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
/**
* 将给定集合中的元素插入到链表尾部
*/
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
/**
* 在指定的位置index后面插入集合c中的元素
*/
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
/**
* 删除list中所有的元素.
*/
public void clear() {
//解除节点间的链接是没有必要的,但是,这样做有助于GC和释放内存
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
// 下面是位置访问的操作
/**
* 返回指定位置节点中的元素.
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
/**
* 替换index位置节点中的元素
*/
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}
/**
* 在指定位置index处插入元素,如果index==size,则在最后位置插入
*/
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
/**
* 删除指定位置的元素
*/
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
/**
* index处是否有节点
*/
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}
/**
* 返回index是否是有效的位置
*/
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}
/**
* 数组越界的异常详细信息
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 返回指定位置的元素
*/
Node<E> node(int index) {
// assert isElementIndex(index);
//如果元素在前半部分,从前查找,否则,从后面开始查找
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
// 下面是搜索操作
/**
* 从list头部开始搜索,返回遇到的第一个给定元素的下标,如果不存在,返回-1
*/
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}
/**
* 返回最后一个指定元素的下标,如果不存在,返回-1
*/
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}
// 下面是队列操作
/**
* 取第一个元素,但是不删除
*/
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* 去第一个元素,但是不删除
*/
public E element() {
return getFirst();
}
/**
* 取第一个元素,并且删除
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* 返回第一个元素,并且删除
*/
public E remove() {
return removeFirst();
}
/**
* 在尾部插入元素e
*/
public boolean offer(E e) {
return add(e);
}
// 下面是双端队列的操作
/**
* 在list的前面插入元素e
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
/**
* 在list的后面插入元素e
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}
/**
* 返回list中的第一个元素
*/
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* 返回list中的最后一个元素,
*/
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
/**
* 返回第一个元素,并且删除
*/
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* 返回最后一个元素,并且删除
*/
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
/**
* 在list头部添加节点
*/
public void push(E e) {
addFirst(e);
}
/**
* 删除头部节点
*/
public E pop() {
return removeFirst();
}
/**
* 从头部开始遍历,删除第一个遇到的元素
*/
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
/**
* 从尾部开始遍历,删除第一个遇到的元素
*/
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
/**
* List迭代器
*/
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
}
//迭代器内部类
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;
}
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();
lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex - 1;
}
public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException();
Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
}
public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}
public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
//节点定义
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
/**
* 降序迭代器,从后向前遍历
*/
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}
/**
* 降序迭代器实现
*/
private class DescendingIterator implements Iterator<E> {
private final ListItr itr = new ListItr(size());
public boolean hasNext() {
return itr.hasPrevious();
}
public E next() {
return itr.previous();
}
public void remove() {
itr.remove();
}
}
@SuppressWarnings("unchecked")
private LinkedList<E> superClone() {
try {
return (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}
/**
* 克隆list对象
*/
public Object clone() {
LinkedList<E> clone = superClone();
// Put clone into "virgin" state
clone.first = clone.last = null;
clone.size = 0;
clone.modCount = 0;
// Initialize clone with our elements
for (Node<E> x = first; x != null; x = x.next)
clone.add(x.item);
return clone;
}
/**
* 将list转换为数组,顺序遍历,取每一个节点元素,放入数组
*/
public Object[] toArray() {
Object[] result = new Object[size];
int i = 0;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
return result;
}
/**
* 将list转换为数组,使用示例:String[] y = x.toArray(new String[0])
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this list
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
int i = 0;
Object[] result = a;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
if (a.length > size)
a[size] = null;
return a;
}
private static final long serialVersionUID = 876323262645176354L;
/**
* 将list写入输出流
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();
// Write out size
s.writeInt(size);
// Write out all elements in the proper order.
for (Node<E> x = first; x != null; x = x.next)
s.writeObject(x.item);
}
/**
* 从输出流构造list
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();
// Read in size
int size = s.readInt();
// Read in all elements in the proper order.
for (int i = 0; i < size; i++)
linkLast((E)s.readObject());
}
/**
*以下方法为1.8新增
*/
/**
*
* @since 1.8
*/
@Override
public Spliterator<E> spliterator() {
return new LLSpliterator<E>(this, -1, 0);
}
/** A customized variant of Spliterators.IteratorSpliterator */
static final class LLSpliterator<E> implements Spliterator<E> {
static final int BATCH_UNIT = 1 << 10; // batch array size increment
static final int MAX_BATCH = 1 << 25; // max batch array size;
final LinkedList<E> list; // null OK unless traversed
Node<E> current; // current node; null until initialized
int est; // size estimate; -1 until first needed
int expectedModCount; // initialized when est set
int batch; // batch size for splits
LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
this.list = list;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getEst() {
int s; // force initialization
final LinkedList<E> lst;
if ((s = est) < 0) {
if ((lst = list) == null)
s = est = 0;
else {
expectedModCount = lst.modCount;
current = lst.first;
s = est = lst.size;
}
}
return s;
}
public long estimateSize() { return (long) getEst(); }
public Spliterator<E> trySplit() {
Node<E> p;
int s = getEst();
if (s > 1 && (p = current) != null) {
int n = batch + BATCH_UNIT;
if (n > s)
n = s;
if (n > MAX_BATCH)
n = MAX_BATCH;
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
current = p;
batch = j;
est = s - j;
return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
}
return null;
}
public void forEachRemaining(Consumer<? super E> action) {
Node<E> p; int n;
if (action == null) throw new NullPointerException();
if ((n = getEst()) > 0 && (p = current) != null) {
current = null;
est = 0;
do {
E e = p.item;
p = p.next;
action.accept(e);
} while (p != null && --n > 0);
}
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super E> action) {
Node<E> p;
if (action == null) throw new NullPointerException();
if (getEst() > 0 && (p = current) != null) {
--est;
E e = p.item;
current = p.next;
action.accept(e);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
}
三、使用示例
1、主要方法和含义
//获取第一个元素,不删除节点
public E getFirst()
//获取最后一个元素,不删除节点
public E getLast()
//删除第一个节点
public E removeFirst()
//删除最后一个节点
public E removeLast()
//在头部添加一个节点
public void addFirst(E e)
//在尾部添加一个节点
public void addLast(E e)
//在尾部添加一个节点
public boolean add(E e)
//顺序遍历,删除链表中第一个元素的节点
public boolean remove(Object o)
//将集合c中的元素添加到尾部
public boolean addAll(Collection<? extends E> c)
//将集合c中的元素添加到index位置后面
public boolean addAll(int index, Collection<? extends E> c)
//获取位置index处的元素,不删除节点
public E get(int index)
//替换位置index处的位置
public E set(int index, E element)
//在位置index前插入节点
public void add(int index, E element)
//删除位置index处的节点
public E remove(int index)
//从头部遍历,返回第一个元素的位置
public int indexOf(Object o)
//从尾部遍历,返回最后一个元素的位置
public int lastIndexOf(Object o)
//返回第一个节点元素,不删除节点
public E peek()
//返回第一个节点元素
public E element()
//返回第一个节点元素,并且删除节点
public E poll()
//删除第一个节点
public E remove()
//在尾部添加节点
public boolean offer(E e)
//在头部添加节点
public boolean offerFirst(E e)
//在尾部添加节点
public boolean offerLast(E e)
//获取第一个节点元素,不删除节点
public E peekFirst()
//获取最后一个节点元素,不删除节点
public E peekLast()
//获取第一个节点元素,删除节点
public E pollFirst()
//获取最后一个节点元素,删除节点
public E pollLast()
//在头部添加节点
public void push(E e)
//返回第一个节点元素,删除节点
public E pop()
2、使用示例
由于LikedList实现了接口List、Queue、Deque,内部通过链表存储,所以支持链表、队列、双端队列和栈等数据结构,下面分别介绍作为这几种数据结构的使用方法:
- 作为队列使用
队列是一种先进先出的数据结构,可以通过add()和poll()两个方法实现,具体代码如下:
/**
* LinkedList作为队列的使用
*/
public static void queueTest(){
Queue<Integer> queue = new LinkedList<>();
Integer[] arrays = new Integer[10];
int size = 10;
//队尾加入元素
for (int i = 0; i < size; i++){
queue.add(i);
}
System.out.println("queue:" + queue.toString());
//取队头元素--不删除
for (int i = 0; i < size; i++){
arrays[i] = queue.peek();
}
System.out.println("peek:" + Arrays.toString(arrays));
System.out.println("queue:" + queue.toString());
arrays = new Integer[10];
//取队头元素--删除
for (int i = 0; i < size; i++){
arrays[i] = queue.poll();
}
System.out.println("poll" + Arrays.toString(arrays));
System.out.println("queue:" + queue.toString());
}
运行结果如下:
- 作为栈使用
栈是一种先进后出的数据结构,可以通过push()和pop()两个方法实现,具体代码如下:
/**
* LinkedList作为栈的使用
*/
public static void stackTest(){
Deque<Integer> stack = new LinkedList<>();
Integer[] arrays = new Integer[10];
int size = 10;
//元素入栈
for (int i = 0; i < size; i++){
stack.push(i);
}
System.out.println("stack:" + stack.toString());
//元素出栈
for (int i = 0; i < size; i++){
arrays[i] = stack.pop();
}
System.out.println("pop:" + Arrays.toString(arrays));
System.out.println("stack:" + stack.toString());
}
运行结果如下:
- 作为双端队列使用
双端队列是一种在两端都可以进出的数据结构,可以通过offerFirst()、offerLast() 和pollFirst()、pollLast()等方法实现,具体代码如下:
/**
* LinkedList作为双端队列的使用
*/
public static void dequeTest(){
Deque<Integer> deque = new LinkedList<>();
Integer[] arrays = new Integer[10];
int size = 5;
//从队头和队尾各入队五个
for (int i = 0; i < size; i++){
deque.offerFirst(i);
deque.offerLast(i);
}
System.out.println("deque:" + deque.toString());
int n = 0;
//从队头和队尾各出队五个
for (; n < 10;){
arrays[n++] = deque.pollFirst();
arrays[n++] = deque.pollLast();
}
System.out.println("poll:" + Arrays.toString(arrays));
System.out.println("deque:" + deque.toString());
}
运行结果如下:
- 遍历方式
和ArrayList一样,进行四种遍历方式的比较,遍历代码和ArrayList一样,运行结果如下:
从上图中的结果可以看出,通过下标遍历LinkedList效率是非常低的。遍历中,get(i)方法每次都从头部或者尾部遍历,找到位置i的节点,取出节点中的元素,所以导致效率低。
四、总结
本节分析了LinkedList的源码的用法。LinkedList实现了List、Queue、Deque接口,内部通过链表实现,能够实现链表、队列、栈和双端队列等数据结构的功能。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。