array
array 定义了一个非常类似list的模块,其array 函数接受两个参数,第一个参数是预先定义好的类型,第二个参数,一般为一个序列。 很少见到
代码:
import array
a = array.array('b',b'abcd')
print(a)
print(a[0])
输出:
array('b', [97, 98, 99, 100])
97
heapq
heapq 是python中实现堆排序的模块。
from heapq import *
import random
# 创建一个堆排序
data = []
for i in range(10):
heappush(data,random.randint(1,20))
print(data)
# 使用 heappop 移除最小的元素
small_num = heappop(data)
print(small_num)
print('pop移除最小元素后: ',data)
# 使用heapreplace替换最小元素,会先执行pop,然后replace
n = heapreplace(data,100)
print(n)
print('执行replace后:',data)
# n个最大 / n个最小
lagest = nlargest(3,data)
small = nsmallest(3,data)
print("3个最大的值:",lagest)
print("3个最小的值:",small)
输出
[2, 3, 8, 7, 4, 18, 12, 17, 16, 13]
2
pop移除最小元素后: [3, 4, 8, 7, 13, 18, 12, 17, 16]
3
执行replace后: [4, 7, 8, 16, 13, 18, 12, 17, 100]
3个最大的值: [100, 18, 17]
3个最小的值: [4, 7, 8]
queue
队列,在线程一节有总结过,有先进先出队列,也有优先级队列,队列结合线程,可以保证线程之间通信的安全。这里主要看一下优先级队列
from queue import PriorityQueue
import threading
import functools
Q = PriorityQueue()
@functools.total_ordering
class Job:
def __init__(self,priority,desc):
self.priority = priority
self.desc = desc
return
# 定义优先级比较
def __eq__(self,other):
try:
self.priority == other.priority
except AttributeError as e:
return NotImplemented
def __lt__(self,other):
try:
self.priority < other.priority
except AssertionError:
return NotImplemented
def worker():
while not Q.empty():
item = Q.get()
import time
time.sleep(1)
print(item.desc)
Q.all_tasks_done
if __name__ == "__main__":
Q.put(Job(3,"mid job"))
Q.put(Job(10,"important job"))
Q.put(Job(1,"low job"))
ts = [threading.Thread(target=worker),threading.Thread(target=worker)]
for t in ts:
t.start()
t.join()
输出
important job
mid job
low job
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。