Python 多好用不用多说,大家看看自己用的语言就知道了。但是 Python 隐藏的高级功能你都 get 了吗?本文中,列举了 Python 中五种略高级的特征以及它们的使用方法,快来一探究竟吧!
Python 是一种美丽的语言,它简单易用却非常强大。但你真的会用 Python 的所有功能吗?
任何编程语言的高级特征通常都是通过大量的使用经验才发现的。比如你在编写一个复杂的项目,并在 stackoverflow 上寻找某个问题的答案。然后你突然发现了一个非常优雅的解决方案,它使用了你从不知道的 Python 功能!
这种学习方式太有趣了:通过探索,偶然发现什么。这里推荐一下我们的Python学习扣qun:784,758,214,这里是python学习者聚集地
下面是 Python 的 5 种高级特征,以及它们的用法。
Lambda 函数
Lambda 函数是一种比较小的匿名函数——匿名是指它实际上没有函数名。
Python 函数通常使用 def a_function_name() 样式来定义,但对于 lambda 函数,我们根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。
lambda 函数可以使用任意数量的参数,但表达式只能有一个。
1. x = lambda a, b : a * b
2. print(x(5, 6)) # prints '30'
4. x = lambda a : a*3 + 3
5. print(x(3)) # prints '12'
看它多么简单!我们执行了一些简单的数学运算,而无需定义整个函数。这是 Python 的众多特征之一,这些特征使它成为一种干净、简单的编程语言。
Map 函数
Map() 是一种内置的 Python 函数,它可以将函数应用于各种数据结构中的元素,如列表或字典。对于这种运算来说,这是一种非常干净而且可读的执行方式。
1. def square_it_func(a):
2. return a * a
4. x = map(square_it_func, [1, 4, 7])
5. print(x) # prints '[1, 16, 47]'
7. def multiplier_func(a, b):
8. return a * b
10. x = map(multiplier_func, [1, 4, 7], [2, 5, 8])
11. print(x) # prints '[2, 20, 56]'看看上面的示例!我们可以将函数应用于单个或多个列表。实际上,你可以使用任何 Python 函数作为 map 函数的输入,只要它与你正在操作的序列元素是兼容的。
这里推荐一下我们的Python学习扣qun:784758214,这里是python学习者聚集地
Filter 函数
filter 内置函数与 map 函数非常相似,它也将函数应用于序列结构(列表、元组、字典)。二者的关键区别在于 filter() 将只返回应用函数返回 True 的元素。
详情请看如下示例:
1. # Our numbers
2. numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
4. # Function that filters out all numbers which are odd
5. def filter_odd_numbers(num):
7. if num % 2 == 0:
8. return True
9. else:
10. return False
12. filtered_numbers = filter(filter_odd_numbers, numbers)
14. print(filtered_numbers)
15. # filtered_numbers = [2, 4, 6, 8, 10, 12, 14]
我们不仅评估了每个列表元素的 True 或 False,filter() 函数还确保只返回匹配为 True 的元素。非常便于处理检查表达式和构建返回列表这两步。
Itertools 模块
Python 的 Itertools 模块是处理迭代器的工具集合。迭代器是一种可以在 for 循环语句(包括列表、元组和字典)中使用的数据类型。
使用 Itertools 模块中的函数让你可以执行很多迭代器操作,这些操作通常需要多行函数和复杂的列表理解。关于 Itertools 的神奇之处,请看以下示例:
1. from itertools import *
3. # Easy joining of two lists into a list of tuples
4. for i in izip([1, 2, 3], ['a', 'b', 'c']):
5. print i
6. # ('a', 1)
7. # ('b', 2)
8. # ('c', 3)
10. # The count() function returns an interator that
11. # produces consecutive integers, forever. This
12. # one is great for adding indices next to your list
13. # elements for readability and convenience
14. for i in izip(count(1), ['Bob', 'Emily', 'Joe']):
15. print i
16. # (1, 'Bob')
17. # (2, 'Emily')
18. # (3, 'Joe')
20. # The dropwhile() function returns an iterator that returns
21. # all the elements of the input which come after a certain
22. # condition becomes false for the first time.
23. def check_for_drop(x):
24. print 'Checking: ', x
25. return (x > 5)
27. for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]):
28. print 'Result: ', i
30. # Checking: 2
31. # Checking: 4
32. # Result: 6
33. # Result: 8
34. # Result: 10
35. # Result: 12
38. # The groupby() function is great for retrieving bunches
39. # of iterator elements which are the same or have similar
40. # properties
42. a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5])
43. for key, value in groupby(a):
44. print(key, value), end=' ')
46. # (1, [1, 1, 1])
47. # (2, [2, 2, 2])
48. # (3, [3, 3])
49. # (4, [4])
50. # (5, [5])
Generator 函数
Generator 函数是一个类似迭代器的函数,即它也可以用在 for 循环语句中。这大大简化了你的代码,而且相比简单的 for 循环,它节省了很多内存。
比如,我们想把 1 到 1000 的所有数字相加,以下代码块的第一部分向你展示了如何使用 for 循环来进行这一计算。
如果列表很小,比如 1000 行,计算所需的内存还行。但如果列表巨长,比如十亿浮点数,这样做就会出现问题了。使用这种 for 循环,内存中将出现大量列表,但不是每个人都有无限的 RAM 来存储这么多东西的。Python 中的 range() 函数也是这么干的,它在内存中构建列表。
代码中第二部分展示了使用 Python generator 函数对数字列表求和。generator 函数创建元素,并只在必要时将其存储在内存中,即一次一个。这意味着,如果你要创建十亿浮点数,你只能一次一个地把它们存储在内存中!Python 2.x 中的 xrange() 函数就是使用 generator 来构建列表。
上述例子说明:如果你想为一个很大的范围生成列表,那么就需要使用 generator 函数。如果你的内存有限,比如使用移动设备或边缘计算,使用这一方法尤其重要。
也就是说,如果你想对列表进行多次迭代,并且它足够小,可以放进内存,那最好使用 for 循环或 Python 2.x 中的 range 函数。因为 generator 函数和 xrange 函数将会在你每次访问它们时生成新的列表值,而 Python 2.x range 函数是静态的列表,而且整数已经置于内存中,以便快速访问。
1. # (1) Using a for loopv
2. numbers = list()
4. for i in range(1000):
5. numbers.append(i+1)
7. total = sum(numbers)
9. # (2) Using a generator
10. def generate_numbers(n):
11. num, numbers = 1, []
12. while num < n:
13. numbers.append(num)
14. num += 1
15. return numbers
16. total = sum(generate_numbers(1000))
18. # (3) range() vs xrange()
19. total = sum(range(1000 + 1))
20. total = sum(xrange(1000 + 1))
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。