参照《Python神经网络编程》写一个简单的三层神经网络
#!/usr/bin/env python
# coding: utf-8
import numpy
# sigmoid 函数
import scipy.special
'''
简单的三层全连接网络,包括一个输入层,一个隐层和一个输出层
损失函数用sigmoid
'''
class neuralNetwork:
# 初始化方法
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
# set number of nodes in each input, hidden, output layer
#输入层节点数
self.inodes = inputnodes
#隐层节点数
self.hnodes = hiddennodes
#输出层节点数
self.onodes = outputnodes
#输入层和隐层的权重
self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
#隐层和输出层的权重
self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
# 学习率
self.lr = learningrate
# 损失函数用sigmoid
self.activation_function = lambda x: scipy.special.expit(x)
pass
# 前馈网络
def feedforward(self, inputs_list):
inputs = numpy.array(inputs_list, ndmin=2).T
# 点乘计算-输入层到隐层的权重 点乘 输入层输入 等于隐层输入
hidden_inputs = numpy.dot(self.wih, inputs)
#在隐层应用损失函数
hidden_outputs = self.activation_function(hidden_inputs)
# 点乘计算-隐层到输出层的权重 点乘 隐层输入 等于隐层输出
final_inputs = numpy.dot(self.who, hidden_outputs)
#在输出层应用损失函数
final_outputs = self.activation_function(final_inputs)
return hidden_outputs,final_outputs
# In[ ]:
# 训练神经网络
def train(self, inputs_list, targets_list):
#先正向进行前馈网络
hidden_outputs,final_outputs = self.feedforward(self, inputs_list)
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(targets_list, ndmin=2).T
#计算最终误差(目标值-实际值)
output_errors = targets - final_outputs
#更新隐层和输出层的权重
self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
# 隐藏层误差 = 输出层误差点乘 隐层到输出层的权重
hidden_errors = numpy.dot(self.who.T, output_errors)
#更新输入层和隐层间的权重
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
pass
# 预测方法,预测方法很简单,直接进行前馈网络
def fit(self, inputs_list):
hidden_outputs,final_outputs = self.feedforward(inputs_list)
return final_outputs
#测试方法
input_nodes = 3
hidden_nodes = 3
output_nodes = 3
learning_rate = 0.3
n = neuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)
inputs_list = [1.0, 0.5, -1.5]
final_outputs = n.fit(inputs_list)
print(final_outputs)
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。