原文链接:http://tecdat.cn/?p=6095

读取样本数据

## [1] 416 7

查询部分数据(结果和预测因子)

head(D)

## time status age albumin edema protime bili ## 1 400 1 58.76523 2.60 1.0 12.2 14.5 ## 2 4500 0 56.44627 4.14 0.0 10.6 1.1 ## 3 1012 1 70.07255 3.48 0.5 12.0 1.4 ## 4 1925 1 54.74059 2.54 0.5 10.3 1.8 ## 5 1504 0 38.10541 3.53 0.0 10.9 3.4 ## 6 2503 1 66.25873 3.98 0.0 11.0 0.8

模型0和模型1的结果数据和预测变量集

<-as.matrix(D[,c(-1,-2)])\ncovs0<-as.matrix(D[,c(-1,-2, -7)])\n\nhead(outcome)","classes":{"has":1},"lang":""}" data-cke-widget-upcasted="1" data-cke-widget-keep-attr="0" data-widget="codeSnippet">outcome=D[,c(1,2)] covs1<-as.matrix(D[,c(-1,-2)]) covs0<-as.matrix(D[,c(-1,-2, -7)]) head(outcome)

## time status ## 1 400 1 ## 2 4500 0 ## 3 1012 1 ## 4 1925 1 ## 5 1504 0 ## 6 2503 1

head(covs0)

## age albumin edema protime ## 1 58.76523 2.60 1.0 12.2 ## 2 56.44627 4.14 0.0 10.6 ## 3 70.07255 3.48 0.5 12.0 ## 4 54.74059 2.54 0.5 10.3 ## 5 38.10541 3.53 0.0 10.9 ## 6 66.25873 3.98 0.0 11.0

head(covs1)

## age albumin edema protime bili ## 1 58.76523 2.60 1.0 12.2 14.5 ## 2 56.44627 4.14 0.0 10.6 1.1 ## 3 70.07255 3.48 0.5 12.0 1.4 ## 4 54.74059 2.54 0.5 10.3 1.8 ## 5 38.10541 3.53 0.0 10.9 3.4 ## 6 66.25873 3.98 0.0 11.0 0.8

推理  

t0=365*5\nx<-IDI(outcome,covs0,covs1,t0,npert=200);","classes":{"has":1},"lang":""}" data-cke-widget-upcasted="1" data-cke-widget-keep-attr="0" data-widget="codeSnippet"> `t0=365*5x<-IDI(outcome,covs0,covs1,t0,npert=200);`

输出 

## Est. Lower Upper p-value ## M1 0.090 0.052 0.119 0 ## M2 0.457 0.340 0.566 0 ## M3 0.041 0.025 0.062 0

M1表示IDI

M2表示NRI

M3表示中位数差异

图形演示

 title=


拓端tecdat
198 声望56 粉丝

引用和评论

0 条评论