1

简介

堆排序(Heap Sort)是利用堆这种数据结构而设计的一种排序算法,是一种选择排序。

堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。

堆排序思路为: 将一个无序序列调整为一个堆,就能找出序列中的最大值(或最小值),然后将找出的这个元素与末尾元素交换,这样有序序列元素就增加一个,无序序列元素就减少一个,对新的无序序列重复操作,从而实现排序。

算法实现步骤

  1. 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆);
  2. 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素;
  3. 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素;
  4. 如此反复进行交换、重建、交换,直到整个序列有序。

Python 代码实现

# heap_sort 代码实现

def build(arr:List[int], root, end):
    while True:
        child = 2 * root + 1 # 左子节点的位置
        if child > end: # 若左子节点超过了最后一个节点,则终止循环
            break
        if (child + 1 <= end) and (arr[child + 1] > arr[child]): # 若右子节点在最后一个节点之前,并且右子节点比左子节点大,则我们的孩子指针移到右子节点上
            child += 1
        if arr[child] > arr[root]: # 若最大的孩子节点大于根节点,则交换两者顺序,并且将根节点指针,移到这个孩子节点上
            arr[child], arr[root] = arr[root], arr[child]
            root = child
        else:
            break

def heap_sort(arr:List[int]):
    n = len(arr)
    first_root = n // 2 - 1 # 确认最深最后的那个根节点的位置
    for root in range(first_root, -1, -1): # 由后向前遍历所有的根节点,建堆并进行调整
        build(arr, root, n - 1)
        
    for end in range(n - 1, 0, -1): # 调整完成后,将堆顶的根节点与堆内最后一个元素调换位置,此时为数组中最大的元素,然后重新调整堆,将最大的元素冒到堆顶。依次重复上述操作
        arr[0], arr[end] = arr[end], arr[0]
        build(arr, 0, end - 1)
# 测试数据
if __name__ == '__main__':
    import random
    random.seed(54)
    arr = [random.randint(0,100) for _ in range(10)]
    print("原始数据:", arr)
    heap_sort(arr)
    print("堆排序结果:", arr)
# 输出结果

原始数据: [17, 56, 71, 38, 61, 62, 48, 28, 57, 42]
堆排序结果: [17, 28, 38, 42, 48, 56, 57, 61, 62, 71]

动画演示

堆排序动画演示

算法分析

  • 时间复杂度

    在每次重建时,随着堆的容量的减小,层数会下降,函数时间复杂度会变化。重建堆一共需要n-1次循环,每次循环的比较次数为$\log _2i$,则相加为:

    $$ T=\log _2n+\log _2(n-1)+\cdots +\log _23+\log _22=\log _2\left( n! \right)\\ \because \left( \dfrac{n}{2} \right) ^{\dfrac{n}{2}}\le n!\le n^n\\ \therefore \dfrac{n}{2}\log _2\left( \dfrac{n}{2} \right)\le \log _2\left( n! \right) \le n\log _2n $$

    所以堆排序时间复杂度为$O(nlog_2n)$。

  • 空间复杂度

    空间复杂度就是在交换元素时那个临时变量所占的内存空间,所以堆排序空间复杂度为$O(1)$

  • 稳定性

    堆排序在交换数据的时候,是比较父结点和子节点之间的数据,所以,即便是存在两个数值相等的兄弟节点,它们的相对顺序在排序也可能发生变化。因此,堆排序是不稳定的。

  • 综合评价

    时间复杂度(平均) 时间复杂度(最好) 时间复杂度(最坏) 空间复杂度 排序方式 稳定性
    $O(nlog_2n)$ $O(nlog_2n)$ $O(nlog_2n)$ $O(1)$ in-place 不稳定

联系我们

个人博客网站:http://www.bling2.cn/

Github地址:https://github.com/lb971216008/Use-Python-to-Achieve

知乎专栏:https://zhuanlan.zhihu.com/Use-Python-to-Achieve

小专栏:https://xiaozhuanlan.com/Use-Python-to-Achieve

博客园:https://www.cnblogs.com/Use-Python-to-Achieve

image


南风以南
1 声望2 粉丝

Python开发工程师,石油开发系研究生