求解平方根,是多项式求解的一个最简单的特例。
分别采用梯度下降和牛顿迭代解法如下。
其中梯度下降的步进如何选择有点不解,迭代次数比牛顿多太多了。
import sys
import math
def gradient_descent(y):
x = 1
alpha = 0.001
delta = 1
count = 0
while abs(delta) > 0.000001:
delta = 4 * x * ( x ** 2 - y)
x -= alpha * delta
count += 1
#print("y=%f\tcount=%d\tx=%f\tdelta=%f\n"%(y, count, x, delta))
return x,count
def niudun(y):
x = 1
delta = abs(x ** 2 - y)
count = 0;
while delta > 0.000001:
x = (x + y/x) / 2
delta = abs(x * x - y)
count += 1
#print("y=%f\tcount=%d\tx=%f\tdelta=%f\n"%(y, count, x, delta))
return x,count
while True:
try:
print "select mode, 1-gradient_descent, 2-niudun, and input y to sqrt"
m, y = map(float, sys.stdin.readline().split(' '))
if m == 1:
x, cnt = gradient_descent(y)
else:
x, cnt = niudun(y)
print("mode=%d, sqrt(%f)=%f, delta=%f, cnt=%d" % (m, y,x, x-math.sqrt(y), cnt))
except RuntimeError, e:
print("exception: ", e)
continue
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。