Softmax回归
LR处理的是二分类问题,Softmax用于多分类场景。假设数据样本为:
$\{ ({x_1},{y_1}),({x_2},{y_2}),...,({x_m},{y_m})\}$,其中${y_i} \in \{ 1,2,...,K\}$,有K个类别,${y_i}$为j的概率是:
$$ p({y_i} = j|{x_i};\theta ) = \frac{{{e^{\theta _j^T{x_i}}}}}{{\sum\limits_{k = 1}^K {{e^{\theta _k^T{x_i}}}} }} $$
估计每一类的概率为:
$$ {h_\theta }({x_i}) = \left[ {\begin{array}{c} {p({y_i} = 1|{x_i};\theta )}\\ {p({y_i} = 2|{x_i};\theta )}\\ {...}\\ {p({y_i} = k|{x_i};\theta )} \end{array}} \right] = \frac{1}{{\sum\limits_{k = 1}^K {{e^{\theta _k^T{x_i}}}} }}\left[ {\begin{array}{c} {{e^{\theta _1^T{x_i}}}}\\ {{e^{\theta _2^T{x_i}}}}\\ {...}\\ {{e^{\theta _K^T{x_i}}}} \end{array}} \right] $$
最终要求的是参数${\theta _1},{\theta _2},...,{\theta _k}$,代价函数:
$$ \begin{array}{l} L(\theta ) = - \frac{1}{m}[\sum\limits_{i = 1}^m {\sum\limits_{j = 1}^k {I({y_i} = j)\log \frac{{{e^{\theta _j^T{x_i}}}}}{{\sum\limits_{k = 1}^K {{e^{\theta _k^T{x_i}}}} }}} } ],\\ I({y_i} = j) = \left\{ {\begin{array}{c} {1,{y_i} \in j}\\ {0,{y_i} \notin j} \end{array}} \right. \end{array} $$
同样用梯度下降法:
$$ \frac{{\partial L(\theta )}}{{\partial {\theta _j}}} = - \frac{1}{m}\sum\limits_{i = 1}^m {{x_i}(I({y_i} = j) - p({y_i} = j|{x_i};\theta ))} $$
Softmax的参数有冗余。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。