在时序数据库中的高基数问题可以看我之前写的文章
今天我们讲解下其中第二种判定方法的range_query 原理
并且讲解下query_log统计的原理
总结range_query查询过程
- 解析参数
- 设置超时并设置opentracing
- 根据queryEngine初始化query并解析promql
- exec函数先设置 ExecTotalTime
- exec函数进入队列排队 设置并计算 ExecQueueTime
- exec函数 设置 EvalTotalTime 并执行execEvalStmt函数
- execEvalStmt函数 准备存储上的querier+select series 设置并计算QueryPreparationTime
- execEvalStmt函数 设置InnerEvalTime,从存储拿到series后在本地内存中执行 evaluator.Eval(s.Expr)
- execEvalStmt函数设置并计算 ResultSortTime
prometheus query_log 配置
配置
# global段开启log即可
global:
query_log_file: /opt/logs/prometheus_query_log
range_query_log解析
{
# 请求基础信息
"httpRequest":{
"clientIP":"192.168.43.114",
"method":"POST",
"path":"/api/v1/query_range"
},
# 参数段
"params":{
"end":"2021-05-03T02:32:45.000Z",
"query":"rate(node_disk_reads_completed_total{instance=~"192\\.168\\.43\\.114:9100"}[2m])",
"start":"2021-05-03T02:17:45.000Z",
"step":15
},
# 统计段
"stats":{
"timings":{
"evalTotalTime":0.000331799,
"resultSortTime":0.000001235,
"queryPreparationTime":0.000075478,
"innerEvalTime":0.00024141,
"execQueueTime":0.000012595,
"execTotalTime":0.000354698
}
},
# 请求时间
"ts":"2021-05-03T02:32:49.876Z"
}
下面从源码层看下range_query的查询原理
D:\nyy_work\go_path\pkg\mod\github.com\prometheus\prometheus@v1.8.2-0.20210220213500-8c8de46003d1\web\api\v1\api.go
func (api *API) queryRange(r *http.Request) (result apiFuncResult) {}
step1: 参数解析
// 解析start
start, err := parseTime(r.FormValue("start"))
if err != nil {
return invalidParamError(err, "start")
}
// 解析end
end, err := parseTime(r.FormValue("end"))
if err != nil {
return invalidParamError(err, "end")
}
// 判断end是否早于start
if end.Before(start) {
return invalidParamError(errors.New("end timestamp must not be before start time"), "end")
}
// 解析 step
step, err := parseDuration(r.FormValue("step"))
if err != nil {
return invalidParamError(err, "step")
}
if step <= 0 {
return invalidParamError(errors.New("zero or negative query resolution step widths are not accepted. Try a positive integer"), "step")
}
防止point过多
// 这里怎么理解?
// For safety, limit the number of returned points per timeseries.
// This is sufficient for 60s resolution for a week or 1h resolution for a year.
if end.Sub(start)/step > 11000 {
err := errors.New("exceeded maximum resolution of 11,000 points per timeseries. Try decreasing the query resolution (?step=XX)")
return apiFuncResult{nil, &apiError{errorBadData, err}, nil, nil}
}
设置超时
ctx := r.Context()
if to := r.FormValue("timeout"); to != "" {
var cancel context.CancelFunc
timeout, err := parseDuration(to)
if err != nil {
return invalidParamError(err, "timeout")
}
ctx, cancel = context.WithTimeout(ctx, timeout)
defer cancel()
}
step2: 根据queryEngine初始化query并解析promql
func (ng *Engine) NewRangeQuery(q storage.Queryable, qs string, start, end time.Time, interval time.Duration) (Query, error) {
expr, err := parser.ParseExpr(qs)
if err != nil {
return nil, err
}
if expr.Type() != parser.ValueTypeVector && expr.Type() != parser.ValueTypeScalar {
return nil, errors.Errorf("invalid expression type %q for range query, must be Scalar or instant Vector", parser.DocumentedType(expr.Type()))
}
qry, err := ng.newQuery(q, expr, start, end, interval)
if err != nil {
return nil, err
}
qry.q = qs
return qry, nil
}
queryEngine从何而来?
expr, err := parser.ParseExpr(qs)
解析promqlinstance_query 和range_query调用同一newQuery
step3:执行查询
// Exec implements the Query interface.
func (q *query) Exec(ctx context.Context) *Result {
if span := opentracing.SpanFromContext(ctx); span != nil {
span.SetTag(queryTag, q.stmt.String())
}
// Exec query.
res, warnings, err := q.ng.exec(ctx, q)
return &Result{Err: err, Value: res, Warnings: warnings}
}
使用分布式追踪 追踪查询分阶段耗时
核心函数 exec
func (ng *Engine) exec(ctx context.Context, q *query) (v parser.Value, ws storage.Warnings, err error) {
// prometheus_engine_queries 计数器,表示当前query个数
ng.metrics.currentQueries.Inc()
defer ng.metrics.currentQueries.Dec()
ctx, cancel := context.WithTimeout(ctx, ng.timeout)
q.cancel = cancel
// 收尾函数,记录日志或者jager
defer func() {
ng.queryLoggerLock.RLock()
if l := ng.queryLogger; l != nil {
params := make(map[string]interface{}, 4)
params["query"] = q.q
if eq, ok := q.Statement().(*parser.EvalStmt); ok {
params["start"] = formatDate(eq.Start)
params["end"] = formatDate(eq.End)
// The step provided by the user is in seconds.
params["step"] = int64(eq.Interval / (time.Second / time.Nanosecond))
}
f := []interface{}{"params", params}
if err != nil {
f = append(f, "error", err)
}
f = append(f, "stats", stats.NewQueryStats(q.Stats()))
if span := opentracing.SpanFromContext(ctx); span != nil {
if spanCtx, ok := span.Context().(jaeger.SpanContext); ok {
f = append(f, "spanID", spanCtx.SpanID())
}
}
if origin := ctx.Value(QueryOrigin{}); origin != nil {
for k, v := range origin.(map[string]interface{}) {
f = append(f, k, v)
}
}
if err := l.Log(f...); err != nil {
ng.metrics.queryLogFailures.Inc()
level.Error(ng.logger).Log("msg", "can't log query", "err", err)
}
}
ng.queryLoggerLock.RUnlock()
}()
// execTotalTime 代表exec函数执行全部耗时不算log
// defer先进后出,这个GetSpanTimer最后执行
execSpanTimer, ctx := q.stats.GetSpanTimer(ctx, stats.ExecTotalTime)
defer execSpanTimer.Finish()
// ExecQueueTime代表队列中等待时间
// 命令行参数query.max-concurrency
// 如果日志中这个耗时高,考虑队列被慢查询占满了。对应在data目录下的queries.active文件
queueSpanTimer, _ := q.stats.GetSpanTimer(ctx, stats.ExecQueueTime, ng.metrics.queryQueueTime)
// Log query in active log. The active log guarantees that we don't run over
// MaxConcurrent queries.
if ng.activeQueryTracker != nil {
queryIndex, err := ng.activeQueryTracker.Insert(ctx, q.q)
if err != nil {
queueSpanTimer.Finish()
return nil, nil, contextErr(err, "query queue")
}
defer ng.activeQueryTracker.Delete(queryIndex)
}
queueSpanTimer.Finish()
// Cancel when execution is done or an error was raised.
defer q.cancel()
const env = "query execution"
// EvalTotalTime代表execEvalStmt函数执行时间
evalSpanTimer, ctx := q.stats.GetSpanTimer(ctx, stats.EvalTotalTime)
defer evalSpanTimer.Finish()
// The base context might already be canceled on the first iteration (e.g. during shutdown).
if err := contextDone(ctx, env); err != nil {
return nil, nil, err
}
switch s := q.Statement().(type) {
case *parser.EvalStmt:
return ng.execEvalStmt(ctx, q, s)
case parser.TestStmt:
return nil, nil, s(ctx)
}
panic(errors.Errorf("promql.Engine.exec: unhandled statement of type %T", q.Statement()))
}
核心函数 execEvalStmt
func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *parser.EvalStmt) (parser.Value, storage.Warnings, error) {
// QueryPreparationTime代表准备存储上的querier+select series时间
prepareSpanTimer, ctxPrepare := query.stats.GetSpanTimer(ctx, stats.QueryPreparationTime, ng.metrics.queryPrepareTime)
mint, maxt := ng.findMinMaxTime(s)
querier, err := query.queryable.Querier(ctxPrepare, mint, maxt)
if err != nil {
prepareSpanTimer.Finish()
return nil, nil, err
}
defer querier.Close()
// populateSeries调用 select返回series
ng.populateSeries(querier, s)
prepareSpanTimer.Finish()
// InnerEvalTime代表从存储拿到series后在本地内存中执行 evaluator.Eval(s.Expr)的时间
// evaluator.Eval需要判断instance_query 还是range_query
evalSpanTimer, ctxInnerEval := query.stats.GetSpanTimer(ctx, stats.InnerEvalTime, ng.metrics.queryInnerEval)
...
// ResultSortTime代表排序耗时
sortSpanTimer, _ := query.stats.GetSpanTimer(ctx, stats.ResultSortTime, ng.metrics.queryResultSort)
sort.Sort(mat)
sortSpanTimer.Finish()
}
总结查询过程
- 解析参数
- 设置超时并设置opentracing
- 根据queryEngine初始化query并解析promql
- exec函数先设置 ExecTotalTime
- exec函数进入队列排队 设置并计算 ExecQueueTime
- exec函数 设置 EvalTotalTime 并执行execEvalStmt函数
- execEvalStmt函数 准备存储上的querier+select series 设置并计算QueryPreparationTime
- execEvalStmt函数 设置InnerEvalTime,从存储拿到series后在本地内存中执行 evaluator.Eval(s.Expr)
- execEvalStmt函数设置并计算 ResultSortTime
所以这几个耗时的关系为
EvalTotalTime=QueryPreparationTime+InnerEvalTime+ResultSortTime
- 计算值 0.000075478+0.00024141+0.000001235=0.000318123
- 真实值 0.000331799 > 0.000318123
- 不一样就对了,还有中间的部分代码执行
ExecTotalTime=ExecQueueTime+EvalTotalTime
- 计算值 0.000331799+0.000012595=0.000344394
- 真实值 0.000354698 > 0.000344394
{ # 请求基础信息 "httpRequest":{ "clientIP":"192.168.43.114", "method":"POST", "path":"/api/v1/query_range" }, # 参数段 "params":{ "end":"2021-05-03T02:32:45.000Z", "query":"rate(node_disk_reads_completed_total{instance=~"192\\.168\\.43\\.114:9100"}[2m])", "start":"2021-05-03T02:17:45.000Z", "step":15 }, # 统计段 "stats":{ "timings":{ "evalTotalTime":0.000331799, "resultSortTime":0.000001235, "queryPreparationTime":0.000075478, "innerEvalTime":0.00024141, "execQueueTime":0.000012595, "execTotalTime":0.000354698 } }, # 请求时间 "ts":"2021-05-03T02:32:49.876Z" }
几个耗时的问题
- 最多的重查询在于QueryPreparationTime,也就是select series阶段
execQueueTime如果很高,不要轻易的调大query.max-concurrency,应该找出慢查并解决
- 盲目调大队列深度会导致更严重的oom问题
- 正常来说每个query在队列中等待时间很短
- innerEvalTime resultSortTime一般耗时不高
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。