简介
pandas是建立在Python编程语言之上的一种快速,强大,灵活且易于使用的开源数据分析和处理工具,它含有使数据清洗和分析⼯
作变得更快更简单的数据结构和操作⼯具。pandas经常和其它⼯具⼀同使⽤,如数值计算⼯具NumPy和SciPy,分析库statsmodels和scikit-learn,和数据可视化库matplotlib等。
pandas是基于NumPy数组构建的,虽然pandas采⽤了⼤量的NumPy编码⻛格,但⼆者最⼤的不同是pandas是专⻔为处理表格和混杂数据设计的。⽽NumPy更适合处理统⼀的数值数组数据。
本文是关于Pandas的简洁教程。
对象创建
因为Pandas是基于NumPy数组来构建的,所以我们在引用的时候需要同时引用Pandas和NumPy:
In [1]: import numpy as np
In [2]: import pandas as pd
Pandas中最主要的两个数据结构是Series和DataFrame。
Series和一维数组很相似,它是由NumPy的各种数据类型来组成的,同时还包含了和这组数据相关的index。
我们来看一个Series的例子:
In [3]: pd.Series([1, 3, 5, 6, 8])
Out[3]:
0 1
1 3
2 5
3 6
4 8
dtype: int64
左边的是索引,右边的是值。因为我们在创建Series的时候并没有指定index,所以index是从0开始到n-1结束。
Series在创建的时候还可以传入np.nan表示空值:
In [4]: pd.Series([1, 3, 5, np.nan, 6, 8])
Out[4]:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
DataFrame是⼀个表格型的数据结构,它含有⼀组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。
DataFrame既有⾏索引也有列索引,它可以被看做由Series组成的字典(共⽤同⼀个索引)。
看一个创建DataFrame的例子:
In [5]: dates = pd.date_range('20201201', periods=6)
In [6]: dates
Out[6]:
DatetimeIndex(['2020-12-01', '2020-12-02', '2020-12-03', '2020-12-04',
'2020-12-05', '2020-12-06'],
dtype='datetime64[ns]', freq='D')
上面我们创建了一个index的list。
然后使用这个index来创建一个DataFrame:
In [7]: pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
Out[7]:
A B C D
2020-12-01 1.536312 -0.318095 -0.737956 0.143352
2020-12-02 1.325221 0.065641 -2.763370 -0.130511
2020-12-03 -1.143560 -0.805807 0.174722 0.427027
2020-12-04 -0.724206 0.050155 -0.648675 -0.645166
2020-12-05 0.182411 0.956385 0.349465 -0.484040
2020-12-06 1.857108 1.245928 -0.767316 -1.890586
上面的DataFrame接收三个参数,第一个参数是DataFrame的表格数据,第二个参数是index的值,也可以看做是行名,第三个参数是列名。
还可以直接传入一个字典来创建一个DataFrame:
In [9]: pd.DataFrame({'A': 1.,
...: 'B': pd.Timestamp('20201202'),
...: 'C': pd.Series(1, index=list(range(4)), dtype='float32'),
...: 'D': np.array([3] * 4, dtype='int32'),
...: 'E': pd.Categorical(["test", "train", "test", "train"]),
...: 'F': 'foo'})
...:
Out[9]:
A B C D E F
0 1.0 2020-12-02 1.0 3 test foo
1 1.0 2020-12-02 1.0 3 train foo
2 1.0 2020-12-02 1.0 3 test foo
3 1.0 2020-12-02 1.0 3 train foo
上面的DataFrame中,每个列都有不同的数据类型。
我们用个图片来更好的理解DataFrame和Series:
它就像是Excel中的表格,带有行头和列头。
DataFrame中的每一列都可以看做是一个Series:
查看数据
创建好Series和DataFrame之后,我们就可以查看他们的数据了。
Series可以通过index和values来获取其索引和值信息:
In [10]: data1 = pd.Series([1, 3, 5, np.nan, 6, 8])
In [12]: data1.index
Out[12]: RangeIndex(start=0, stop=6, step=1)
In [14]: data1.values
Out[14]: array([ 1., 3., 5., nan, 6., 8.])
DataFrame可以看做是Series的集合,所以DataFrame带有更多的属性:
In [16]: df.head()
Out[16]:
A B C D
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599
2020-12-03 0.610846 0.216937 0.821258 0.805818
2020-12-04 0.490105 0.732421 0.547129 -0.443274
2020-12-05 -0.475531 -0.853141 0.160017 0.986973
In [17]: df.tail(3)
Out[17]:
A B C D
2020-12-04 0.490105 0.732421 0.547129 -0.443274
2020-12-05 -0.475531 -0.853141 0.160017 0.986973
2020-12-06 0.288091 -2.164323 0.193989 -0.197923
head跟tail分别取得DataFrame的头几行和尾部几行。
同样的DataFrame也有index和columns:
In [19]: df.index
Out[19]:
DatetimeIndex(['2020-12-01', '2020-12-02', '2020-12-03', '2020-12-04',
'2020-12-05', '2020-12-06'],
dtype='datetime64[ns]', freq='D')
In [20]: df.values
Out[20]:
array([[ 0.44624818, -0.0605494 , -0.44566462, -1.39250227],
[-1.11974917, -1.65977552, -0.61865617, 1.97159943],
[ 0.61084596, 0.2169369 , 0.82125808, 0.80581847],
[ 0.49010504, 0.73242082, 0.54712889, -0.44327351],
[-0.47553134, -0.85314134, 0.16001748, 0.98697257],
[ 0.28809148, -2.16432292, 0.19398863, -0.19792266]])
describe方法可以对数据进行统计:
In [26]: df.describe()
Out[26]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.040002 -0.631405 0.109679 0.288449
std 0.687872 1.128019 0.556099 1.198847
min -1.119749 -2.164323 -0.618656 -1.392502
25% -0.284626 -1.458117 -0.294244 -0.381936
50% 0.367170 -0.456845 0.177003 0.303948
75% 0.479141 0.147565 0.458844 0.941684
max 0.610846 0.732421 0.821258 1.971599
还可以对DataFrame进行转置:
In [27]: df.T
Out[27]:
2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06
A 0.446248 -1.119749 0.610846 0.490105 -0.475531 0.288091
B -0.060549 -1.659776 0.216937 0.732421 -0.853141 -2.164323
C -0.445665 -0.618656 0.821258 0.547129 0.160017 0.193989
D -1.392502 1.971599 0.805818 -0.443274 0.986973 -0.197923
可以按行和按列进行排序:
In [28]: df.sort_index(axis=1, ascending=False)
Out[28]:
D C B A
2020-12-01 -1.392502 -0.445665 -0.060549 0.446248
2020-12-02 1.971599 -0.618656 -1.659776 -1.119749
2020-12-03 0.805818 0.821258 0.216937 0.610846
2020-12-04 -0.443274 0.547129 0.732421 0.490105
2020-12-05 0.986973 0.160017 -0.853141 -0.475531
2020-12-06 -0.197923 0.193989 -2.164323 0.288091
In [29]: df.sort_values(by='B')
Out[29]:
A B C D
2020-12-06 0.288091 -2.164323 0.193989 -0.197923
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599
2020-12-05 -0.475531 -0.853141 0.160017 0.986973
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502
2020-12-03 0.610846 0.216937 0.821258 0.805818
2020-12-04 0.490105 0.732421 0.547129 -0.443274
选择数据
通过DataFrame的列名,可以选择代表列的Series:
In [30]: df['A']
Out[30]:
2020-12-01 0.446248
2020-12-02 -1.119749
2020-12-03 0.610846
2020-12-04 0.490105
2020-12-05 -0.475531
2020-12-06 0.288091
Freq: D, Name: A, dtype: float64
通过切片可以选择行:
In [31]: df[0:3]
Out[31]:
A B C D
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599
2020-12-03 0.610846 0.216937 0.821258 0.805818
或者这样:
In [32]: df['20201202':'20201204']
Out[32]:
A B C D
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599
2020-12-03 0.610846 0.216937 0.821258 0.805818
2020-12-04 0.490105 0.732421 0.547129 -0.443274
loc和iloc
使用loc可以使用轴标签来选取数据。
In [33]: df.loc[:, ['A', 'B']]
Out[33]:
A B
2020-12-01 0.446248 -0.060549
2020-12-02 -1.119749 -1.659776
2020-12-03 0.610846 0.216937
2020-12-04 0.490105 0.732421
2020-12-05 -0.475531 -0.853141
2020-12-06 0.288091 -2.164323
前面是行的选择,后面是列的选择。
还可以指定index的名字:
In [34]: df.loc['20201202':'20201204', ['A', 'B']]
Out[34]:
A B
2020-12-02 -1.119749 -1.659776
2020-12-03 0.610846 0.216937
2020-12-04 0.490105 0.732421
如果index的名字不是切片的话,将会给数据降维:
In [35]: df.loc['20201202', ['A', 'B']]
Out[35]:
A -1.119749
B -1.659776
Name: 2020-12-02 00:00:00, dtype: float64
如果后面列是一个常量的话,直接返回对应的值:
In [37]: df.loc['20201202', 'A']
Out[37]: -1.1197491665145112
iloc是根据值来选取数据,比如我们选择第三行:
In [42]: df.iloc[3]
Out[42]:
A 0.490105
B 0.732421
C 0.547129
D -0.443274
Name: 2020-12-04 00:00:00, dtype: float64
它其实和df.loc['2020-12-04']是等价的:
In [41]: df.loc['2020-12-04']
Out[41]:
A 0.490105
B 0.732421
C 0.547129
D -0.443274
Name: 2020-12-04 00:00:00, dtype: float64
同样可以传入切片:
In [43]: df.iloc[3:5, 0:2]
Out[43]:
A B
2020-12-04 0.490105 0.732421
2020-12-05 -0.475531 -0.853141
可以传入list:
In [44]: df.iloc[[1, 2, 4], [0, 2]]
Out[44]:
A C
2020-12-02 -1.119749 -0.618656
2020-12-03 0.610846 0.821258
2020-12-05 -0.475531 0.160017
取具体某个格子的值:
In [45]: df.iloc[1, 1]
Out[45]: -1.6597755161871708
布尔索引
DataFrame还可以通过布尔值来进行索引,下面是找出列A中所有元素大于0的:
In [46]: df[df['A'] > 0]
Out[46]:
A B C D
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502
2020-12-03 0.610846 0.216937 0.821258 0.805818
2020-12-04 0.490105 0.732421 0.547129 -0.443274
2020-12-06 0.288091 -2.164323 0.193989 -0.197923
或者找出整个DF中,值大于0的:
In [47]: df[df > 0]
Out[47]:
A B C D
2020-12-01 0.446248 NaN NaN NaN
2020-12-02 NaN NaN NaN 1.971599
2020-12-03 0.610846 0.216937 0.821258 0.805818
2020-12-04 0.490105 0.732421 0.547129 NaN
2020-12-05 NaN NaN 0.160017 0.986973
2020-12-06 0.288091 NaN 0.193989 NaN
可以给DF添加一列:
In [48]: df['E'] = ['one', 'one', 'two', 'three', 'four', 'three']
In [49]: df
Out[49]:
A B C D E
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502 one
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599 one
2020-12-03 0.610846 0.216937 0.821258 0.805818 two
2020-12-04 0.490105 0.732421 0.547129 -0.443274 three
2020-12-05 -0.475531 -0.853141 0.160017 0.986973 four
2020-12-06 0.288091 -2.164323 0.193989 -0.197923 three
使用isin()来进行范围值的判断判断:
In [50]: df[df['E'].isin(['two', 'four'])]
Out[50]:
A B C D E
2020-12-03 0.610846 0.216937 0.821258 0.805818 two
2020-12-05 -0.475531 -0.853141 0.160017 0.986973 four
处理缺失数据
现在我们的df有a,b,c,d,e这5列,如果我们再给他加一列f,那么f的初始值将会是NaN:
In [55]: df.reindex(columns=list(df.columns) + ['F'])
Out[55]:
A B C D E F
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502 one NaN
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599 one NaN
2020-12-03 0.610846 0.216937 0.821258 0.805818 two NaN
2020-12-04 0.490105 0.732421 0.547129 -0.443274 three NaN
2020-12-05 -0.475531 -0.853141 0.160017 0.986973 four NaN
2020-12-06 0.288091 -2.164323 0.193989 -0.197923 three NaN
我们给前面的两个F赋值:
In [74]: df1.iloc[0:2,5]=1
In [75]: df1
Out[75]:
A B C D E F
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502 one 1.0
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599 one 1.0
2020-12-03 0.610846 0.216937 0.821258 0.805818 two NaN
2020-12-04 0.490105 0.732421 0.547129 -0.443274 three NaN
2020-12-05 -0.475531 -0.853141 0.160017 0.986973 four NaN
2020-12-06 0.288091 -2.164323 0.193989 -0.197923 three NaN
可以drop所有为NaN的行:
In [76]: df1.dropna(how='any')
Out[76]:
A B C D E F
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502 one 1.0
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599 one 1.0
可以填充NaN的值:
In [77]: df1.fillna(value=5)
Out[77]:
A B C D E F
2020-12-01 0.446248 -0.060549 -0.445665 -1.392502 one 1.0
2020-12-02 -1.119749 -1.659776 -0.618656 1.971599 one 1.0
2020-12-03 0.610846 0.216937 0.821258 0.805818 two 5.0
2020-12-04 0.490105 0.732421 0.547129 -0.443274 three 5.0
2020-12-05 -0.475531 -0.853141 0.160017 0.986973 four 5.0
2020-12-06 0.288091 -2.164323 0.193989 -0.197923 three 5.0
可以对值进行判断:
In [78]: pd.isna(df1)
Out[78]:
A B C D E F
2020-12-01 False False False False False False
2020-12-02 False False False False False False
2020-12-03 False False False False False True
2020-12-04 False False False False False True
2020-12-05 False False False False False True
2020-12-06 False False False False False True
合并
DF可以使用Concat来合并多个df,我们先创建一个df:
In [79]: df = pd.DataFrame(np.random.randn(10, 4))
In [80]: df
Out[80]:
0 1 2 3
0 1.089041 2.010142 -0.532527 0.991669
1 1.303678 -0.614206 -1.358952 0.006290
2 -2.663938 0.600209 -0.008845 -0.036900
3 0.863718 -0.450501 1.325427 0.417345
4 0.789239 -0.492630 0.873732 0.375941
5 0.327177 0.010719 -0.085967 -0.591267
6 -0.014350 1.372144 -0.688845 0.422701
7 -3.355685 0.044306 -0.979253 -2.184240
8 -0.051961 0.649734 1.156918 -0.233725
9 -0.692530 0.057805 -0.030565 0.209416
然后把DF拆成三部分:
In [81]: pieces = [df[:3], df[3:7], df[7:]]
最后把使用concat把他们合起来:
In [82]: pd.concat(pieces)
Out[82]:
0 1 2 3
0 1.089041 2.010142 -0.532527 0.991669
1 1.303678 -0.614206 -1.358952 0.006290
2 -2.663938 0.600209 -0.008845 -0.036900
3 0.863718 -0.450501 1.325427 0.417345
4 0.789239 -0.492630 0.873732 0.375941
5 0.327177 0.010719 -0.085967 -0.591267
6 -0.014350 1.372144 -0.688845 0.422701
7 -3.355685 0.044306 -0.979253 -2.184240
8 -0.051961 0.649734 1.156918 -0.233725
9 -0.692530 0.057805 -0.030565 0.209416
还可以使用join来进行类似SQL的合并:
In [83]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [84]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
In [85]: left
Out[85]:
key lval
0 foo 1
1 foo 2
In [86]: right
Out[86]:
key rval
0 foo 4
1 foo 5
In [87]: pd.merge(left, right, on='key')
Out[87]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
分组
先看上面的DF:
In [99]: df2
Out[99]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
我们可以根据key来进行group,从而进行sum:
In [98]: df2.groupby('key').sum()
Out[98]:
lval rval
key
foo 6 18
group还可以按多个列进行:
In [100]: df2.groupby(['key','lval']).sum()
Out[100]:
rval
key lval
foo 1 9
2 9
本文已收录于 http://www.flydean.com/01-python-pandas-overview/
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。