flydean
English

# NaN的例子

``````In [1]: df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
...:                   columns=['one', 'two', 'three'])
...:

In [2]: df['four'] = 'bar'

In [3]: df['five'] = df['one'] > 0

In [4]: df
Out[4]:
one       two     three four   five
a  0.469112 -0.282863 -1.509059  bar   True
c -1.135632  1.212112 -0.173215  bar  False
e  0.119209 -1.044236 -0.861849  bar   True
f -2.104569 -0.494929  1.071804  bar  False
h  0.721555 -0.706771 -1.039575  bar   True``````

``````In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

In [6]: df2
Out[6]:
one       two     three four   five
a  0.469112 -0.282863 -1.509059  bar   True
b       NaN       NaN       NaN  NaN    NaN
c -1.135632  1.212112 -0.173215  bar  False
d       NaN       NaN       NaN  NaN    NaN
e  0.119209 -1.044236 -0.861849  bar   True
f -2.104569 -0.494929  1.071804  bar  False
g       NaN       NaN       NaN  NaN    NaN
h  0.721555 -0.706771 -1.039575  bar   True``````

``````In [7]: df2['one']
Out[7]:
a    0.469112
b         NaN
c   -1.135632
d         NaN
e    0.119209
f   -2.104569
g         NaN
h    0.721555
Name: one, dtype: float64

In [8]: pd.isna(df2['one'])
Out[8]:
a    False
b     True
c    False
d     True
e    False
f    False
g     True
h    False
Name: one, dtype: bool

In [9]: df2['four'].notna()
Out[9]:
a     True
b    False
c     True
d    False
e     True
f     True
g    False
h     True
Name: four, dtype: bool``````

``````In [11]: None == None                                                 # noqa: E711
Out[11]: True``````

``````In [12]: np.nan == np.nan
Out[12]: False``````

# 整数类型的缺失值

NaN默认是float类型的，如果是整数类型，我们可以强制进行转换：

``````In [14]: pd.Series([1, 2, np.nan, 4], dtype=pd.Int64Dtype())
Out[14]:
0       1
1       2
2    <NA>
3       4
dtype: Int64``````

# Datetimes 类型的缺失值

``````In [15]: df2 = df.copy()

In [16]: df2['timestamp'] = pd.Timestamp('20120101')

In [17]: df2
Out[17]:
one       two     three four   five  timestamp
a  0.469112 -0.282863 -1.509059  bar   True 2012-01-01
c -1.135632  1.212112 -0.173215  bar  False 2012-01-01
e  0.119209 -1.044236 -0.861849  bar   True 2012-01-01
f -2.104569 -0.494929  1.071804  bar  False 2012-01-01
h  0.721555 -0.706771 -1.039575  bar   True 2012-01-01

In [18]: df2.loc[['a', 'c', 'h'], ['one', 'timestamp']] = np.nan

In [19]: df2
Out[19]:
one       two     three four   five  timestamp
a       NaN -0.282863 -1.509059  bar   True        NaT
c       NaN  1.212112 -0.173215  bar  False        NaT
e  0.119209 -1.044236 -0.861849  bar   True 2012-01-01
f -2.104569 -0.494929  1.071804  bar  False 2012-01-01
h       NaN -0.706771 -1.039575  bar   True        NaT

In [20]: df2.dtypes.value_counts()
Out[20]:
float64           3
datetime64[ns]    1
bool              1
object            1
dtype: int64``````

# None 和 np.nan 的转换

``````In [21]: s = pd.Series([1, 2, 3])

In [22]: s.loc[0] = None

In [23]: s
Out[23]:
0    NaN
1    2.0
2    3.0
dtype: float64``````

``````In [24]: s = pd.Series(["a", "b", "c"])

In [25]: s.loc[0] = None

In [26]: s.loc[1] = np.nan

In [27]: s
Out[27]:
0    None
1     NaN
2       c
dtype: object``````

# 缺失值的计算

``````In [28]: a
Out[28]:
one       two
a       NaN -0.282863
c       NaN  1.212112
e  0.119209 -1.044236
f -2.104569 -0.494929
h -2.104569 -0.706771

In [29]: b
Out[29]:
one       two     three
a       NaN -0.282863 -1.509059
c       NaN  1.212112 -0.173215
e  0.119209 -1.044236 -0.861849
f -2.104569 -0.494929  1.071804
h       NaN -0.706771 -1.039575

In [30]: a + b
Out[30]:
one  three       two
a       NaN    NaN -0.565727
c       NaN    NaN  2.424224
e  0.238417    NaN -2.088472
f -4.209138    NaN -0.989859
h       NaN    NaN -1.413542``````

``````In [31]: df
Out[31]:
one       two     three
a       NaN -0.282863 -1.509059
c       NaN  1.212112 -0.173215
e  0.119209 -1.044236 -0.861849
f -2.104569 -0.494929  1.071804
h       NaN -0.706771 -1.039575

In [32]: df['one'].sum()
Out[32]: -1.9853605075978744

In [33]: df.mean(1)
Out[33]:
a   -0.895961
c    0.519449
e   -0.595625
f   -0.509232
h   -0.873173
dtype: float64``````

``````In [34]: df.cumsum()
Out[34]:
one       two     three
a       NaN -0.282863 -1.509059
c       NaN  0.929249 -1.682273
e  0.119209 -0.114987 -2.544122
f -1.985361 -0.609917 -1.472318
h       NaN -1.316688 -2.511893

In [35]: df.cumsum(skipna=False)
Out[35]:
one       two     three
a  NaN -0.282863 -1.509059
c  NaN  0.929249 -1.682273
e  NaN -0.114987 -2.544122
f  NaN -0.609917 -1.472318
h  NaN -1.316688 -2.511893``````

# 使用fillna填充NaN数据

``````In [42]: df2
Out[42]:
one       two     three four   five  timestamp
a       NaN -0.282863 -1.509059  bar   True        NaT
c       NaN  1.212112 -0.173215  bar  False        NaT
e  0.119209 -1.044236 -0.861849  bar   True 2012-01-01
f -2.104569 -0.494929  1.071804  bar  False 2012-01-01
h       NaN -0.706771 -1.039575  bar   True        NaT

In [43]: df2.fillna(0)
Out[43]:
one       two     three four   five            timestamp
a  0.000000 -0.282863 -1.509059  bar   True                    0
c  0.000000  1.212112 -0.173215  bar  False                    0
e  0.119209 -1.044236 -0.861849  bar   True  2012-01-01 00:00:00
f -2.104569 -0.494929  1.071804  bar  False  2012-01-01 00:00:00
h  0.000000 -0.706771 -1.039575  bar   True                    0``````

``````In [45]: df
Out[45]:
one       two     three
a       NaN -0.282863 -1.509059
c       NaN  1.212112 -0.173215
e  0.119209 -1.044236 -0.861849
f -2.104569 -0.494929  1.071804
h       NaN -0.706771 -1.039575

Out[46]:
one       two     three
a       NaN -0.282863 -1.509059
c       NaN  1.212112 -0.173215
e  0.119209 -1.044236 -0.861849
f -2.104569 -0.494929  1.071804
h -2.104569 -0.706771 -1.039575``````

``In [48]: df.fillna(method='pad', limit=1)``

fill方法统计：

bfill / backfill向后填充

``````In [53]: dff
Out[53]:
A         B         C
0  0.271860 -0.424972  0.567020
1  0.276232 -1.087401 -0.673690
2  0.113648 -1.478427  0.524988
3       NaN  0.577046 -1.715002
4       NaN       NaN -1.157892
5 -1.344312       NaN       NaN
6 -0.109050  1.643563       NaN
7  0.357021 -0.674600       NaN
8 -0.968914 -1.294524  0.413738
9  0.276662 -0.472035 -0.013960

In [54]: dff.fillna(dff.mean())
Out[54]:
A         B         C
0  0.271860 -0.424972  0.567020
1  0.276232 -1.087401 -0.673690
2  0.113648 -1.478427  0.524988
3 -0.140857  0.577046 -1.715002
4 -0.140857 -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
6 -0.109050  1.643563 -0.293543
7  0.357021 -0.674600 -0.293543
8 -0.968914 -1.294524  0.413738
9  0.276662 -0.472035 -0.013960

In [55]: dff.fillna(dff.mean()['B':'C'])
Out[55]:
A         B         C
0  0.271860 -0.424972  0.567020
1  0.276232 -1.087401 -0.673690
2  0.113648 -1.478427  0.524988
3       NaN  0.577046 -1.715002
4       NaN -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
6 -0.109050  1.643563 -0.293543
7  0.357021 -0.674600 -0.293543
8 -0.968914 -1.294524  0.413738
9  0.276662 -0.472035 -0.013960``````

``In [56]: dff.where(pd.notna(dff), dff.mean(), axis='columns')``

# 使用dropna删除包含NA的数据

``````In [57]: df
Out[57]:
one       two     three
a  NaN -0.282863 -1.509059
c  NaN  1.212112 -0.173215
e  NaN  0.000000  0.000000
f  NaN  0.000000  0.000000
h  NaN -0.706771 -1.039575

In [58]: df.dropna(axis=0)
Out[58]:
Empty DataFrame
Columns: [one, two, three]
Index: []

In [59]: df.dropna(axis=1)
Out[59]:
two     three
a -0.282863 -1.509059
c  1.212112 -0.173215
e  0.000000  0.000000
f  0.000000  0.000000
h -0.706771 -1.039575

In [60]: df['one'].dropna()
Out[60]: Series([], Name: one, dtype: float64)``````

# 插值interpolation

``````In [61]: ts
Out[61]:
2000-01-31    0.469112
2000-02-29         NaN
2000-03-31         NaN
2000-04-28         NaN
2000-05-31         NaN
...
2007-12-31   -6.950267
2008-01-31   -7.904475
2008-02-29   -6.441779
2008-03-31   -8.184940
2008-04-30   -9.011531
Freq: BM, Length: 100, dtype: float64``````
``````In [64]: ts.interpolate()
Out[64]:
2000-01-31    0.469112
2000-02-29    0.434469
2000-03-31    0.399826
2000-04-28    0.365184
2000-05-31    0.330541
...
2007-12-31   -6.950267
2008-01-31   -7.904475
2008-02-29   -6.441779
2008-03-31   -8.184940
2008-04-30   -9.011531
Freq: BM, Length: 100, dtype: float64``````

``````In [67]: ts2
Out[67]:
2000-01-31    0.469112
2000-02-29         NaN
2002-07-31   -5.785037
2005-01-31         NaN
2008-04-30   -9.011531
dtype: float64

In [68]: ts2.interpolate()
Out[68]:
2000-01-31    0.469112
2000-02-29   -2.657962
2002-07-31   -5.785037
2005-01-31   -7.398284
2008-04-30   -9.011531
dtype: float64

In [69]: ts2.interpolate(method='time')
Out[69]:
2000-01-31    0.469112
2000-02-29    0.270241
2002-07-31   -5.785037
2005-01-31   -7.190866
2008-04-30   -9.011531
dtype: float64``````

``````In [70]: ser
Out[70]:
0.0      0.0
1.0      NaN
10.0    10.0
dtype: float64

In [71]: ser.interpolate()
Out[71]:
0.0      0.0
1.0      5.0
10.0    10.0
dtype: float64

In [72]: ser.interpolate(method='values')
Out[72]:
0.0      0.0
1.0      1.0
10.0    10.0
dtype: float64``````

``````In [73]: df = pd.DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
....:                    'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})
....:

In [74]: df
Out[74]:
A      B
0  1.0   0.25
1  2.1    NaN
2  NaN    NaN
3  4.7   4.00
4  5.6  12.20
5  6.8  14.40

In [75]: df.interpolate()
Out[75]:
A      B
0  1.0   0.25
1  2.1   1.50
2  3.4   2.75
3  4.7   4.00
4  5.6  12.20
5  6.8  14.40``````

interpolate还接收limit参数，可以指定插值的个数。

``````In [95]: ser.interpolate(limit=1)
Out[95]:
0     NaN
1     NaN
2     5.0
3     7.0
4     NaN
5     NaN
6    13.0
7    13.0
8     NaN
dtype: float64``````

# 使用replace替换值

replace可以替换常量，也可以替换list：

``````In [102]: ser = pd.Series([0., 1., 2., 3., 4.])

In [103]: ser.replace(0, 5)
Out[103]:
0    5.0
1    1.0
2    2.0
3    3.0
4    4.0
dtype: float64``````
``````In [104]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
Out[104]:
0    4.0
1    3.0
2    2.0
3    1.0
4    0.0
dtype: float64``````

``````In [106]: df = pd.DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]})

In [107]: df.replace({'a': 0, 'b': 5}, 100)
Out[107]:
a    b
0  100  100
1    1    6
2    2    7
3    3    8
4    4    9``````

``````In [108]: ser.replace([1, 2, 3], method='pad')
Out[108]:
0    0.0
1    0.0
2    0.0
3    0.0
4    4.0
dtype: float64``````

##### 程序那些事
Spring,区块链,密码学,分布式,多线程等教程 欢迎关注我的公众号:程序那些事，更多精彩等着您！

723 声望
404 粉丝