3

前言

理解红黑树需要掌握下面知识

  • 二分查找算法
  • 二叉查找树
  • 自平衡树(AVL树和红黑树)

基于二分算法设计出了二叉查找树,为了弥补二叉查找树倾斜缺点,又出现了一些自平衡树,比如AVL树,红黑树等。

二分查找算法

在40亿数据中查找一个指定数据最多只需要32次,这就是二分查找算法的魅力。

二分查找算法(又叫折半查找算法)是一种在有序数组中查找某一特定元素的搜索算法。注意有序数组的前提。

下图中查找 4 ,查找从中间元素开始 4 < 7 ,从左边查找 4 > 3 ,从右边查找 4 < 6,然后找到元素。

Binary_search_into_array.png

二分查找算法时间和空间复杂度,\( {n} \) 是数组长度。

平均时间复杂度 \( {O(\log n)} \)

最坏时间复杂度 \( {O(\log n)} \)

最优时间复杂度 \( {O(1)} \)

循环空间复杂度 \( {O(1)} \)

递归空间复杂度 \( {O(\log n)} \)

Java 递归实现二分查找。

    public static int binarySearch(int[] arr, int start, int end, int hkey) {
        if (start > end) {
            return -1;
        }
        int mid = start + (end - start) / 2;    //防止溢位
        if (arr[mid] > hkey) {
            return binarySearch(arr, start, mid - 1, hkey);
        }
        if (arr[mid] < hkey) {
            return binarySearch(arr, mid + 1, end, hkey);
        }
        return mid;
    }

Java 循环实现二分查找。

    public static int binarySearch(int[] arr, int start, int end, int hkey) {
        int result = -1;
        while (start <= end) {
            int mid = start + (end - start) / 2;    //防止溢位
            if (arr[mid] > hkey) {
                end = mid - 1;
            } else if (arr[mid] < hkey) {
                start = mid + 1;
            } else {
                result = mid;
                break;
            }
        }
        return result;
    }

二叉查找树

二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它具有以下性质:

  1. 若任意节点的左子树不空,则左子树上所有节点的值都小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值都大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树。
二叉树:每个节点最多只有两个分支,分别称为“左子树”或“右子树”。

二叉查找树操作(搜索,插入,删除)效率依赖树高度。

最坏情况,树向一边倾斜,树高度 $n$ (节点数量),此时操作时间复杂度为 $O(n)$

倾斜

理想情况,树高度 $log(n)$ ,操作时间复杂度 $O(log(n))$ ,此时它是一棵平衡的二叉查找树。

理想平衡

算法平均最差
空间O(n)O(n)
搜索O(log n)O(n)
插入O(log n)O(n)
删除O(log n)O(n)

为了让二叉查找树尽可能达到理想情况,出现了一些自平衡二叉查找树,如AVL树红黑树

AVL树

AVL树中的每个节点都有一个平衡因子属性(左子树高度减去右子树高度)。每次元素插入删除操作后,会重新进行平衡计算,如果节点平衡因子不为 [1,0,-1] 时,需要通过旋转使树到达平衡。AVL 树中有 4 种旋转操作。

  1. 左旋(Left Rotation)
  2. 右旋(RightRotation)
  3. 左右旋转(Left-Right Rotation)
  4. 左右旋转(Right-Left Rotation)

AVL_Tree_Example

下面是 Java AVL 树的例子

    private Node insert(Node node, int key) {
          .....
        return rebalance(node); // 重新平衡计算
    }

    private Node delete(Node node, int key) {
          .....
        node = rebalance(node); // 重新平衡计算
        return node;
    }

        private Node rebalance(Node z) {
        updateHeight(z);
        int balance = getBalance(z);
        if (balance > 1) {
            if (height(z.right.right) > height(z.right.left)) {
                z = rotateLeft(z);
            } else {
                z.right = rotateRight(z.right);
                z = rotateLeft(z);
            }
        } else if (balance < -1) {
            if (height(z.left.left) > height(z.left.right)) {
                z = rotateRight(z);
            } else {
                z.left = rotateLeft(z.left);
                z = rotateRight(z);
            }
        }
        return z;
    }
https://github.com/eugenp/tut...

红黑树

性质

红黑树中的每个节点都有一个颜色属性。每次元素插入删除操作后,会进行重新着色旋转达到平衡。

红黑树属于二叉查找树,它包含二叉查找树性质,同时还包含以下性质:

  1. 每个节点要么是黑色,要么是红色。
  2. 所有的叶子节点(NIL)被认为是黑色的。
  3. 每个红色节点的两个子节点一定都是黑色(不会出现两个连续红色节点)。
  4. 从根到叶子节点(NIL)的每条路径都包含相同数量的黑色节点。

Red-black_tree_example

查找

查找不会破坏树的平衡,逻辑也比较简单,通常有以下几个步骤。

  1. 从根节点开始查找,把根节点设置为当前节点;
  2. 当前节点为空,返回null;
  3. 当前节点不为空,查找key小于当前节点key,左子节点设为当前节点。
  4. 当前节点不为空,查找key大于当前节点key,右子节点设为当前节点。
  5. 当前节点不为空,查找key等于当前节点key,返回当前节点。

代码实现可以参考 Java 里面的 TreeMap。

    Entry<K,V> p = root;
    while (p != null) {
        int cmp = k.compareTo(p.key);
        if (cmp < 0){
            p = p.left;
    }else if (cmp > 0){
      p = p.right;
    }else{
          return p;
    }
  }
    return null;

插入

插入操作分两大块:一查找插入位置;二插入后自平衡。

  1. 将根节点赋给当前节点,循环查找插入位置的节点;
  2. 当查找key等于当前节点key,更新节点存储的值,返回;
  3. 当查找key小于当前节点key,把当前节点的左子节点设置为当前节点;
  4. 当查找key大于当前节点key,把当前节点的右子节点设置为当前节点;
  5. 循环结束后,构造新节点作为当前节点左(右)子节点;
  6. 通过旋转变色进行自平衡。

代码实现可以参考 Java 里面的 TreeMap。

    Entry<K,V> t = root;
  Entry<K,V> parent;
    int cmp;
    do {
        parent = t;
        cmp = k.compareTo(t.key);
    if (cmp < 0){
            t = t.left; 
    }else if (cmp > 0){
            t = t.right;
    }else {
            return t.setValue(value);   // 更新节点的值,返回
    }
  } while (t != null);

    Entry<K,V> e = new Entry<>(key, value, parent);
        if (cmp < 0){
          parent.left = e;
        }else {
            parent.right = e;  
    }
  fixAfterInsertion(e); // 通过旋转变色自平衡

插入场景分析

  1. 根节点为空,将插入节点设置为根节点并设置为黑色;
  2. 插入节点的key已存在,只需要更新插入值,无需再自平衡;
  3. 插入节点的父节点为黑色,直接插入,无需自平衡;
  4. 插入节点的父节点为红色。

场景 4 插入节点后出现两个连续的红色节点,所以需要重新着色旋转。这里面又有很多种情况,具体看下面。

先声明下节点关系,祖节点(10),叔节点(20),父节点(9),插入节点(8)。

节点关系

一般通过判断插入节点的叔节点来确定合适的平衡操作。

插入场景

叔叔节点存在且为红色

rb_insert_01.gif

  1. 先查找位置将节点8 插入;
  2. 父节点9 叔节点20 变为黑色,祖节点10 变为红色;
  3. 祖节点10 是根节点,所以又变为黑色。

叔叔节点不存在或为黑色,父节点是祖节点的左节点,插入节点是父节点的左子节点。

rb_insert_02.gif

  1. 先查找位置将节点7 插入;
  2. 祖节点9 进行右旋转;
  3. 父节点8 变为黑色,祖节点9 变为红色;

叔叔节点不存在或为黑色,父节点是祖节点的左节点,插入节点是父节点的右子节点。

rb_insert_03.gif

  1. 先查找位置将节点8 插入;
  2. 父节点7 进行左旋转;
  3. 祖节点9 进行右旋转;
  4. 将插入节点8 变为黑色,祖节点9 变为红色;

叔叔节点不存在或为黑色,父节点是祖节点的右节点,插入节点是父节点的右子节点。

rb_insert_04.gif

  1. 先查找位置将节点10 插入;
  2. 祖节点8 进行左旋转;
  3. 父节点9 变为黑色,祖节点8 变为红色;

叔叔节点不存在或为黑色,父节点是祖节点的右节点,插入节点是父节点的左子节点。

rb_insert_05.gif

  1. 先查找位置将节点9 插入;
  2. 父节点10 进行右旋转;
  3. 祖节点8 进行左旋转;
  4. 将插入节点9 变为黑色,祖节点8 变为红色;

删除

删除操作分两大块:一查找节点删除;二删除后自平衡。删除节点后需要找节点来替代删除的位置。

根据二叉查找树性质,删除节点之后,可以用左子树中的最大值右子树中的最小值来替换删除节点。如果删除的节点无子节点,可以直接删除,无需替换;如果只有一个子节点,就用这个子节点替换。

思考一些删除场景,使用下面可视化工具模拟场景。

https://www.cs.csubak.edu/~ms...

替换节点和删除节点其中一个红色

rb_del_01.gif

  1. 查找到删除节点3,将它删除;
  2. 节点2 替换删除位置,并变为删除节点3 的黑色。

替换节点和删除节点都是黑色,它兄弟节点是黑色,兄弟节点的子节点至少有一个红色。

替换节点和删除节点都是黑色,它兄弟节点是黑色,兄弟节点的子节点至少有一个红色。

替换节点和删除节点都是黑色,它兄弟节点是黑色,兄弟节点的两个子节点都是黑色。

替换节点和删除节点都是黑色,它兄弟节点是红色

AVL树和红黑树对比

下面是[1-10]分别存储在AVL树红黑树的图片。可以看出:

  • AVL树更严格平衡,带来查询速度快。为了维护严格的平衡,需要付出频繁旋转的性能代价。
  • 红黑树相较于要求严格的AVL树来说,它的旋转次数少。

1-10 AVL树

1-10 红黑树


编程码农
455 声望1.4k 粉丝

多年编程老菜鸟👨‍💻🦍