头图

文章来源 | 恒源云社区(一个专注 AI 行业的共享算力平台: 恒源智享云)

原文地址 | 图像平滑

原文作者 | instter


学习目标

了解图像中的噪声类型
了解平均滤波,高斯滤波,中值滤波等的内容
能够使用滤波器对图像进行处理

1 图像噪声

由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。常见的图像噪声有高斯噪声、椒盐噪声等。

1.1 椒盐噪声

椒盐噪声也称为脉冲噪声是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。椒盐噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生、类比数位转换器或位元传输错误等。例如失效的感应器导致像素值为最小值,饱和的感应器导致像素值为最大值。

1.2 高斯噪声

高斯噪声是指噪声密度函数服从高斯分布的一类噪声。由于高斯噪声在空间和频域中数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用于实践中。高斯随机变量z的概率密度函数由下式给出:

\( p(z)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(z-\mu)^{2}}{2 \sigma^{2}}}2 \)

其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方\( \sigma^{2} \)称为z的方差。高斯函数的曲线如图所示。

2 图像平滑简介

图像平滑从信号处理的角度看就是去除其中的高频信息,保留低频信息。因此我们可以对图像实施低通滤波。低通滤波可以去除图像中的噪声,对图像进行平滑。

根据滤波器的不同可分为均值滤波高斯滤波中值滤波双边滤波

2.1 均值滤波

采用均值滤波模板对图像噪声进行滤除。令\( S_{x y} \) 表示中心在(x, y)点,尺寸为m×n 的矩形子图像窗口的坐标组。 均值滤波器可表示为:
\( \hat{f}(x, y)=\frac{1}{m n} \sum_{(s, t) \in S_{x y}} \)
由一个归一化卷积框完成的。它只是用卷积框覆盖区域所有像素的平均值来代替中心元素。

例如,3x3标准化的平均过滤器如下所示:
\( K=\frac{1}{9}\begin{bmatrix} \ 1 \ \ 1\ \ 1\ \ 1 \ \ 1\ \ 1\ \ 1 \ \ 1\ \ 1 \end{bmatrix} \)
均值滤波的优点是算法简单,计算速度较快,缺点是在去噪的同时去除了很多细节部分,将图像变得模糊。
API:

cv.blur(src, ksize, anchor, borderType)

参数:

  • src:输入图像
  • ksize:卷积核的大小
  • anchor:默认值 (-1,-1) ,表示核中心
  • borderType:边界类型

2.2 高斯滤波

二维高斯是构建高斯滤波器的基础,其概率分布函数如下所示:
\( G(x,y) = \frac{1}{2\pi \sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}} \)

\( G(x,y) \)的分布是一个突起的帽子的形状。这里的σ可以看作两个值,一个是x方向的标准差\( \sigma_x \),另一个是y方向的标准差\( \sigma_y \)

当\( \sigma_x \)和\( \sigma_y \)取值越大,整个形状趋近于扁平;当\( \sigma_x \)和\( \sigma_y \),整个形状越突起。
正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。计算平滑结果时,只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。

高斯平滑在从图像中去除高斯噪声方面非常有效。

高斯平滑的流程:

  • 首先确定权重矩阵

假定中心点的坐标是(0,0),那么距离它最近的8个点的坐标如下:
更远的点以此类推。

为了计算权重矩阵,需要设定σ的值。假定σ=1.5,则模糊半径为1的权重矩阵如下:
这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵。

  • 计算高斯模糊

有了权重矩阵,就可以计算高斯模糊的值了。
假设现有9个像素点,灰度值(0-255)如下:
每个点乘以对应的权重值:
得到

将这9个值加起来,就是中心点的高斯模糊的值。

对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯平滑。

API:

cv2.GaussianBlur(src,ksize,sigmaX,sigmay,borderType)

参数:

src: 输入图像

  • ksize:高斯卷积核的大小,注意 : 卷积核的宽度和高度都应为奇数,且可以不同
  • sigmaX: 水平方向的标准差
  • sigmaY: 垂直方向的标准差,默认值为0,表示与sigmaX相同
  • borderType:填充边界类型

示例

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/dogGasuss.jpeg')
# 2 高斯滤波
blur = cv.GaussianBlur(img,(3,3),1)
# 3 图像显示
plt.figure(figsize=(10,8),dpi=100)
plt.subplot(121),plt.imshow(img[:,:,::-1]),plt.title('原图')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur[:,:,::-1]),plt.title('高斯滤波后结果')
plt.xticks([]), plt.yticks([])
plt.show()

2.3 中值滤波

中值滤波是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值

中值滤波对椒盐噪声(salt-and-pepper noise)来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。
API:

cv.medianBlur(src, ksize )

参数:

  • src:输入图像
  • ksize:卷积核的大小

示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/dogsp.jpeg')
# 2 中值滤波
blur = cv.medianBlur(img,5)
# 3 图像展示
plt.figure(figsize=(10,8),dpi=100)
plt.subplot(121),plt.imshow(img[:,:,::-1]),plt.title('原图')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur[:,:,::-1]),plt.title('中值滤波后结果')
plt.xticks([]), plt.yticks([])
plt.show()


恒源云
234 声望2 粉丝