前言
Nginx
大名鼎鼎,天下谁人不识君,就不用介绍了,号称百万级的连接。👍👍👍
Gunicorn
,Python 下的 wsgi server
。是 Python web 生态的重要组成部分,相当于 java 下的 tomcat
。💪💪💪
今天我们就定量的来看看,这两玩意的 RPS 的具体数值。
当然,比得不是这两玩意谁跟强,而是拿出来个重量级选手更有代表性
测试平台介绍
不用的平台,对结论肯定有很大的区别,所以列出此处的硬件平台:
使用的硬件测试平台都是重量级,避免瓶颈出现在硬件平台上
客户端:
- Linux 操作系统
- AMD 5700g 8核心16线程 👊👊👊👊👊👊
- 32GB 的 RAM
服务端:
- Linux 操作系统
- AMD 4800u 8核心16线程 👏👏👏👏👏
- 4GB 的 RAM
压力测试工具介绍
使用名为 wrk 的压力测试工具,这个工具有 31k
的 star
,足够说明权威性和专业性了
参考文章:
ubuntu20.04 安装 wrk 压力测试工具以及简单使用
纯 Nginx
服务端准备工作
我们需要安装 Nginx 和 Guicorn 在服务端,下面就先讲讲 Nginx
步骤一:安装 Nginx
sudo apt install nginx
步骤二:替换默认的介绍页
location / {
#设置content type
default_type text/html ;
# HTTP Status Code 和 内容
return 200 "hello world! ";
}
木桶效应,系统上限由系统的短板决定:
为什么要替换介绍页?因为 Nginx 默认那个介绍页面又臭又长,如果不替换,测试瓶颈就在网络上了。你想想,一个 html 页面 300KB,一张千兆网卡传 400 下就被打满了。所以我们换成 "hello world! ",撑死算 1 KB,也能提供 125x1000=12w 的上限了,12w 可比 400 好看多了。
步骤三:重启 Nginx
sudo service nginx restart
步骤四:查看 Nginx
状态:
Nginx 是 master-slave
多进程模型,slave 即 work
进程数目等于 CPU 逻辑核心数目, 4800u
是8核心16线程,所以就有 16 个 work 进程
─$ sudo service nginx status
● nginx.service - A high performance web server and a reverse proxy server
Loaded: loaded (/lib/systemd/system/nginx.service; disabled; vendor preset: disabled)
Active: active (running) since Tue 2022-01-04 22:44:13 CST; 1s ago
Docs: man:nginx(8)
Process: 11215 ExecStartPre=/usr/sbin/nginx -t -q -g daemon on; master_process on; (code=exited, status=0>
Process: 11216 ExecStart=/usr/sbin/nginx -g daemon on; master_process on; (code=exited, status=0/SUCCESS)
Main PID: 11217 (nginx)
Tasks: 17 (limit: 3391)
Memory: 17.6M
CPU: 95ms
CGroup: /system.slice/nginx.service
├─11217 "nginx: master process /usr/sbin/nginx -g daemon on; master_process on;"
├─11218 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11219 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11220 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11221 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11222 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11223 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11224 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11226 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11227 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11228 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11229 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11230 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11231 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11232 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
├─11233 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
└─11234 "nginx: worker process" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ">
1月 04 22:44:13 kali systemd[1]: Starting A high performance web server and a reverse proxy server...
1月 04 22:44:13 kali systemd[1]: Started A high performance web server and a reverse proxy server.
开始测试
测试1
来吧,客户端出击!🏄🏼♂️🏄🏼♂️🏄🏼♂️
wrk http://192.168.31.95 -t 16 -c 64 -d 10
- 参数
t
表示 thread,即线程个数 - 参数
c
表示 connect,即连接个数 - 参数
d
表示持续几秒
压力测试就是要高并发的请求,以洪水猛兽的姿态冲烂服务器 🤯🤯🤯
测试结果
─➤ ./wrk http://192.168.31.95 -t16 -c64 -d 10
Running 10s test @ http://192.168.31.95
16 threads and 64 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 5.85ms 3.72ms 48.92ms 82.33%
Req/Sec 708.88 348.74 1.48k 67.47%
113734 requests in 10.09s, 17.35MB read
Requests/sec: 11271.96
Transfer/sec: 1.72MB
我们可以看到 Requests/sec: 11271.96
,这是啥意思,就是客户端的 wrk 平均每秒完成了 1.1w 个请求,对应的 RPS:1.1w
同时可以看到 Transfer/sec: 1.72MB
说明只占用了 1.72MB 的网络带宽,距离网络的承载能力还远着呢!
当然,我并不清楚这个 1.72MB 描述的是应用层、网络层、数据链路层、物理层中的哪一个的占用,我猜大概率就是应用层的。
测试2
下面我们调整一下 wrk 的参数,看看不同参数下的测试结果的不同
wrk http://192.168.31.95 -t32 -c160 -d 10
我们提高线程数目和连接数目,做更猛烈的并发请求 🤯🤯🤯🤯
测试结果
─➤ ./wrk http://192.168.31.95 -t32 -c160 -d 10
Running 10s test @ http://192.168.31.95
32 threads and 160 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 8.00ms 6.31ms 69.27ms 84.35%
Req/Sec 701.97 395.33 1.29k 47.11%
225052 requests in 10.07s, 34.33MB read
Requests/sec: 22349.79
Transfer/sec: 3.41MB
这个时候,RPS
提高到了 2.2w
测试3
wrk http://192.168.31.95 -t64 -c320 -d 10
翻倍吧!!!!!!!继续提高线程数目和连接数目,做更猛烈的并发请求 🤯🤯🤯🤯
测试结果
─➤ ./wrk http://192.168.31.95 -t64 -c320 -d 10
Running 10s test @ http://192.168.31.95
64 threads and 320 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 14.08ms 9.75ms 84.81ms 87.53%
Req/Sec 384.02 157.25 1.03k 66.21%
246408 requests in 10.07s, 37.59MB read
Requests/sec: 24458.27
Transfer/sec: 3.73MB
好吧,这个时候,RPS 就没有翻倍了,说明我们基本找到 Nginx
的上限了:RPS 2.5w
对 Nginx 的总结
我们可以看到,单机对单机的压力测试,Nginx 的上限差不多就是 2.5w 的 RPS
其实这个时候,服务端的 CPU 的占用率很低
下面就来看看 Gunicorn 的好戏吧
纯 Gunicoen
下面是测试代码,python 写的,你要跑的话,找个 Python 版本大于等于 3.6 的就能跑起来
from flask import Flask
app = Flask(__name__)
@app.route('/', methods=['GET'])
def home():
success: bool = False
return {
'status': success
}
@app.route('/upload/', methods=['POST'])
def hello():
success: bool = False
return {
'status': success
}
Gunicorn 有多种运行模式:
- 方式一:Gunicorn 和 Nginx 一样,也支持 master-slave 的架构,即多进程 👍
- 方式二:单进程多线程,即纯多线程 👍👍
- 方式三:多进程和多线程相结合,即结合方式一和二,也还是 master-slave 的架构,即多进程,但是每个进程下面又是多线程的 👍👍👍
下面我们挨个测试 🤪
纯多进程模式
gunicorn.conf.py
文件的配置
import multiprocessing
bind = "0.0.0.0:63000"
workers = 32
参考文章:
Configuration File
运行 Gunicorn
─$ gunicorn fapi:app -c gunicorn.conf.py
[2022-01-04 22:53:08 +0800] [11519] [INFO] Starting gunicorn 20.1.0
[2022-01-04 22:53:09 +0800] [11519] [INFO] Listening at: http://0.0.0.0:63000 (11519)
[2022-01-04 22:53:09 +0800] [11519] [INFO] Using worker: sync
[2022-01-04 22:53:09 +0800] [11520] [INFO] Booting worker with pid: 11520
[2022-01-04 22:53:09 +0800] [11521] [INFO] Booting worker with pid: 11521
[2022-01-04 22:53:09 +0800] [11522] [INFO] Booting worker with pid: 11522
[2022-01-04 22:53:09 +0800] [11523] [INFO] Booting worker with pid: 11523
[2022-01-04 22:53:09 +0800] [11524] [INFO] Booting worker with pid: 11524
[2022-01-04 22:53:09 +0800] [11525] [INFO] Booting worker with pid: 11525
[2022-01-04 22:53:09 +0800] [11526] [INFO] Booting worker with pid: 11526
[2022-01-04 22:53:09 +0800] [11527] [INFO] Booting worker with pid: 11527
[2022-01-04 22:53:09 +0800] [11528] [INFO] Booting worker with pid: 11528
[2022-01-04 22:53:09 +0800] [11529] [INFO] Booting worker with pid: 11529
[2022-01-04 22:53:09 +0800] [11530] [INFO] Booting worker with pid: 11530
[2022-01-04 22:53:09 +0800] [11531] [INFO] Booting worker with pid: 11531
[2022-01-04 22:53:09 +0800] [11532] [INFO] Booting worker with pid: 11532
[2022-01-04 22:53:09 +0800] [11533] [INFO] Booting worker with pid: 11533
[2022-01-04 22:53:09 +0800] [11534] [INFO] Booting worker with pid: 11534
[2022-01-04 22:53:09 +0800] [11535] [INFO] Booting worker with pid: 11535
[2022-01-04 22:53:09 +0800] [11536] [INFO] Booting worker with pid: 11536
[2022-01-04 22:53:09 +0800] [11537] [INFO] Booting worker with pid: 11537
[2022-01-04 22:53:10 +0800] [11538] [INFO] Booting worker with pid: 11538
[2022-01-04 22:53:10 +0800] [11539] [INFO] Booting worker with pid: 11539
[2022-01-04 22:53:10 +0800] [11540] [INFO] Booting worker with pid: 11540
[2022-01-04 22:53:10 +0800] [11541] [INFO] Booting worker with pid: 11541
[2022-01-04 22:53:10 +0800] [11542] [INFO] Booting worker with pid: 11542
[2022-01-04 22:53:10 +0800] [11543] [INFO] Booting worker with pid: 11543
[2022-01-04 22:53:10 +0800] [11544] [INFO] Booting worker with pid: 11544
[2022-01-04 22:53:10 +0800] [11545] [INFO] Booting worker with pid: 11545
[2022-01-04 22:53:10 +0800] [11546] [INFO] Booting worker with pid: 11546
[2022-01-04 22:53:10 +0800] [11547] [INFO] Booting worker with pid: 11547
[2022-01-04 22:53:10 +0800] [11548] [INFO] Booting worker with pid: 11548
[2022-01-04 22:53:10 +0800] [11549] [INFO] Booting worker with pid: 11549
[2022-01-04 22:53:10 +0800] [11550] [INFO] Booting worker with pid: 11550
[2022-01-04 22:53:10 +0800] [11551] [INFO] Booting worker with pid: 11551
进行压力测试
wrk http://192.168.31.95:63000 -t64 -c320 -d 10
这次我们就不一点一点调整 wrk 的参数了,直接撑爆上 Nginx 的同款配置参数
测试结果
─➤ ./wrk http://192.168.31.95:63000 -t64 -c320 -d 10 1 ↵
Running 10s test @ http://192.168.31.95:63000
64 threads and 320 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 76.09ms 37.75ms 664.24ms 71.68%
Req/Sec 33.70 17.98 191.00 75.18%
21342 requests in 10.09s, 3.30MB read
Requests/sec: 2115.13
Transfer/sec: 334.65KB
可以看到,RPS
有点丢人,才 2000
🤡🤡🤡🤡🤡🤡🤡🤡🤡🤡🤡🤡🤡
纯多线程模式
gunicorn.conf.py
文件的配置
import multiprocessing
bind = "0.0.0.0:63000"
threads = 32
运行 Gunicorn
─$ gunicorn fapi:app -c gunicorn.conf.py
[2022-01-04 22:57:38 +0800] [11607] [INFO] Starting gunicorn 20.1.0
[2022-01-04 22:57:38 +0800] [11607] [INFO] Listening at: http://0.0.0.0:63000 (11607)
[2022-01-04 22:57:38 +0800] [11607] [INFO] Using worker: gthread
[2022-01-04 22:57:38 +0800] [11608] [INFO] Booting worker with pid: 11608
进行压力测试
wrk http://192.168.31.95:63000 -t64 -c320 -d 10
测试结果
─➤ ./wrk http://192.168.31.95:63000 -t64 -c320 -d 10
Running 10s test @ http://192.168.31.95:63000
64 threads and 320 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 122.28ms 109.01ms 2.00s 98.58%
Req/Sec 42.33 22.31 303.00 75.49%
8888 requests in 10.08s, 1.42MB read
Socket errors: connect 0, read 0, write 0, timeout 73
Requests/sec: 881.68
Transfer/sec: 143.80KB
更加拉夸了!!!才 900
的 RPS
呢!💩💩💩💩
多线程和多进程混合模式
从上面的测试可以看到,不管是多线程还是多进程的效果都比较感人,单单是一个 hello world
都这么拉夸.
下面看看混合模式的表现吧!
我准备了多组测试,每组测试的进程数和每个进程的线程数都是不一样的,冲冲冲!
测试一:
gunicorn.conf.py
文件的配置
import multiprocessing
bind = "0.0.0.0:63000"
workers = 8
threads = 8
第一轮是 8 进程,每个进程 8 个线程的选手
运行 Gunicorn
─$ gunicorn fapi:app -c gunicorn.conf.py 130 ⨯
[2022-01-04 22:59:45 +0800] [11668] [INFO] Starting gunicorn 20.1.0
[2022-01-04 22:59:45 +0800] [11668] [INFO] Listening at: http://0.0.0.0:63000 (11668)
[2022-01-04 22:59:45 +0800] [11668] [INFO] Using worker: gthread
[2022-01-04 22:59:45 +0800] [11669] [INFO] Booting worker with pid: 11669
[2022-01-04 22:59:45 +0800] [11670] [INFO] Booting worker with pid: 11670
[2022-01-04 22:59:45 +0800] [11671] [INFO] Booting worker with pid: 11671
[2022-01-04 22:59:45 +0800] [11672] [INFO] Booting worker with pid: 11672
[2022-01-04 22:59:46 +0800] [11673] [INFO] Booting worker with pid: 11673
[2022-01-04 22:59:46 +0800] [11674] [INFO] Booting worker with pid: 11674
[2022-01-04 22:59:46 +0800] [11675] [INFO] Booting worker with pid: 11675
[2022-01-04 22:59:46 +0800] [11676] [INFO] Booting worker with pid: 11676
进行压力测试
wrk http://192.168.31.95:63000 -t64 -c320 -d 10
测试结果
─➤ ./wrk http://192.168.31.95:63000 -t64 -c320 -d 10
Running 10s test @ http://192.168.31.95:63000
64 threads and 320 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 74.25ms 24.12ms 304.79ms 72.75%
Req/Sec 67.53 17.83 171.00 77.02%
43368 requests in 10.10s, 6.91MB read
Requests/sec: 4293.70
Transfer/sec: 700.34KB
可以看到,RPS:4000
,比如之前的两种方式都有很大的进步哦!👏
测试二:
gunicorn.conf.py
文件的配置
import multiprocessing
bind = "0.0.0.0:63000"
workers = 16
threads = 16
第二轮是 16 进程,每个进程 16 个线程的选手
进行压力测试
wrk http://192.168.31.95:63000 -t64 -c320 -d 10
测试结果
─➤ ./wrk http://192.168.31.95:63000 -t64 -c320 -d 10
Running 10s test @ http://192.168.31.95:63000
64 threads and 320 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 63.56ms 32.04ms 242.04ms 80.12%
Req/Sec 82.27 29.26 180.00 69.46%
51927 requests in 10.08s, 8.27MB read
Requests/sec: 5150.42
Transfer/sec: 840.00KB
可以看到,RPS:5000
!👏👏
测试三:
gunicorn.conf.py
文件的配置
import multiprocessing
bind = "0.0.0.0:63000"
workers = 8
threads = 32
第三轮是 8 进程,每个进程 32 个线程的选手
进行压力测试
wrk http://192.168.31.95:63000 -t64 -c320 -d 10
测试结果
─➤ ./wrk http://192.168.31.95:63000 -t64 -c320 -d 10
Running 10s test @ http://192.168.31.95:63000
64 threads and 320 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 80.44ms 31.75ms 515.60ms 90.45%
Req/Sec 63.91 16.65 232.00 87.49%
40686 requests in 10.07s, 6.48MB read
Requests/sec: 4039.57
Transfer/sec: 658.99KB
可以看到,RPS:4000
!👏👏
有下降,我没有三轮测试取平均,所以,概率误差,很正常
测试四:
gunicorn.conf.py
文件的配置
import multiprocessing
bind = "0.0.0.0:63000"
workers = 16
threads = 32
第四轮是 16 进程,每个进程 32 个线程的选手
进行压力测试
wrk http://192.168.31.95:63000 -t64 -c320 -d 10
测试结果
─➤ ./wrk http://192.168.31.95:63000 -t64 -c320 -d 10
Running 10s test @ http://192.168.31.95:63000
64 threads and 320 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 67.43ms 35.35ms 529.30ms 82.06%
Req/Sec 76.93 27.15 160.00 74.54%
49099 requests in 10.10s, 7.82MB read
Requests/sec: 4861.03
Transfer/sec: 792.80KB
可以看到,RPS:5000
!👏👏👏
Gunicorn 总结
可以看到,比起 Nginx
这个专业中的专业 HTTP 服务器,Gunicorn
还是要逊色不少的。
战绩是 25k
比 5k
为什么 Nginx
可以比 Gunicorn
强这么多呢!
- Nginx 是 c 写的,比纯 Python 的 Gunicorn 必然更加快,这是语言优势。(下次可以引入
uwsgi
看看) - Nginx 是优化到极致的产物,毕竟 Nginx 是一个连 CPU 亲和性都用上了的高玩!
- Nginx 采用了 IO 多路复用,相比于 Gunicorn 的多进程多线程模型,效率要高很多。(下次可以引入
uvicorn
)
Nginx 和 Gunicorn 混合模式
todo
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。