3

prometheus中的指标t/v数据保存在block/chunks下,label数据保存在block/index下。

对于t/v数据,prometheus采用Facebook Gorilla论文的压缩方式:

  • timestamp: delta-of-delta方式压缩时序点的时间值;
  • value: xor方式压缩时序点的value值;

按照上述压缩方式,可以将一个16byte的时序点压缩成1.37byte,压缩率非常高。

时序点t/v的压缩

1)timestamp压缩

在时序上,相邻两个点的时间戳的差值一般是固定的,若隔60s pull一次,那么timestamp差值一般都是60s,比如

  • p1: 10:00:00,p2: 10:01:00,p3: 10:01:59,p4:10:03:00,p5:10:04:00,p6:10:05:00
  • 时间戳的差值为:60s,59s,61s,60s,60s;

Gorilla论文采用delta-of-delta方式压缩timestamp:

  • 第一个时序点的时间戳t0,被完整存储起来;
  • 第二个时序点的时间戳t1,存储delta=t1-t0;
  • 对后续的时间戳tn,首先计算dod值:delta=(tn - tn-1) - (tn-1 - tn-2);

    • 如果dod=0,则使用1bit=“0”存储该时间戳;
    • 如果dod=[-8191, 8192],则先存入“10”作为标识,再用14bit存储该dod值;
    • 如果dod=[-65535, 65536],则先存入“110”作为标识,再用17bit存储该dod值;
    • 如果dod=[-524287, 524288],则先存入“1110”作为标识,再用20bit存储该dod值;
    • 如果dod>524288,则先存入“1111”作为标识,再用64bit存储该dod值;

在实践中发现,95%的timestamp能够按照dod=0的情形进行存储。

2)value压缩

Gorilla论文对时序点value的压缩基于:

  • 相邻时序点的value值不会发生明显变化;
  • value大多是浮点数,当两个value非常接近的时候,这两个浮点数的符号位、指数位和尾数部分的前几bit都是相同的;

value值的压缩算法:

  • 第一个时序点的value值不压缩,直接保存;
  • 从第二个点开始,将其value与上一个value进行XOR运算;

    • 若XOR运算结果为“0”,则表示前后两个value相同,仅存入1bit的“0”值即可;
    • 否则,存入1bit值“1”;

      • 若XOR结果中非0的部分包含在前一个XOR结果中,那么再写入1bit值“0”,然后存入XOR中非0的部分;
      • 否则,写入1bit值“1”,用5bit存入XOR中前值0的个数,6bit存入中间非0的长度,最后再存入中间的非0位;

数据显示,大约有60%的value值仅用1bit存储,有30%的value值落入“10”范围,剩余10%的value值落入“11”范围。

3)压缩示例

输入时序序列值

10:00:00    3.1
10:01:01    3.2
10:02:00    3.0
10:02:59    3.2
10:03:00    3.1

那么将存入

10:00:00     3.1
61           3.2 xor 3.1
-2(59-61)    3.0 xor 3.2
0(59-59)     3.2 xor 3.0
2(61-59)     3.1 xor 3.2

写入t/v的源码分析

xorAppender负责写入t/v的值,t=int64,v=float64

// tsdb/chunkenc/xor.go
func (a *xorAppender) Append(t int64, v float64) {
    var tDelta uint64
    num := binary.BigEndian.Uint16(a.b.bytes())

    //第一个点,完整记录t1和v1的值
    if num == 0 {
        buf := make([]byte, binary.MaxVarintLen64)
        for _, b := range buf[:binary.PutVarint(buf, t)] {
            a.b.writeByte(b)        //写入t1的值
        }
        a.b.writeBits(math.Float64bits(v), 64)  //写入v1的值
    } else if num == 1 {    //第二个点
        tDelta = uint64(t - a.t)
        buf := make([]byte, binary.MaxVarintLen64)
        for _, b := range buf[:binary.PutUvarint(buf, tDelta)] {
            a.b.writeByte(b)    //写入tDeleta=t2-t1
        }
        a.writeVDelta(v)        //写入v2^v1的值
    } else {    //第三个点及以后的点
        tDelta = uint64(t - a.t)
        dod := int64(tDelta - a.tDelta)    //计算dod

        // Gorilla has a max resolution of seconds, Prometheus milliseconds.
        // Thus we use higher value range steps with larger bit size.
        switch {
        case dod == 0:
            a.b.writeBit(zero)    //写入0
        case bitRange(dod, 14):    //dod=[-8191,8192],先存入10作为标识,再用14bit存储dod的值
            a.b.writeBits(0x02, 2) // '10'
            a.b.writeBits(uint64(dod), 14)
        case bitRange(dod, 17):    //dod=[-65535,65536],先存入110作为标识,再用17bit存储该dod的值
            a.b.writeBits(0x06, 3) // '110'
            a.b.writeBits(uint64(dod), 17)
        case bitRange(dod, 20):    //dod=[-524287,524288],先存入1110作为标识,再用20bit存储该dod的值
            a.b.writeBits(0x0e, 4) // '1110'
            a.b.writeBits(uint64(dod), 20)    
        default:        //dod>524288,先存入1111作为标识,再用64bit存储该dod的值
            a.b.writeBits(0x0f, 4) // '1111'
            a.b.writeBits(uint64(dod), 64)
        }
        a.writeVDelta(v)    //写入vn^vn-1
    }
    a.t = t    //写入的最后一个t
    a.v = v    //写入的最后一个v
    binary.BigEndian.PutUint16(a.b.bytes(), num+1)
    a.tDelta = tDelta    //写入的最后一个tDelta
}

再看一下使用xor写入VDelta的源码:

// tsdb/chunkenc/xor.go
func (a *xorAppender) writeVDelta(v float64) {
    vDelta := math.Float64bits(v) ^ math.Float64bits(a.v)    //当前value与上一个value进行xor

    if vDelta == 0 {        //xor=0,存入1bit'0'即可
        a.b.writeBit(zero)
        return
    }
    a.b.writeBit(one)    //先存入控制位'1'

    leading := uint8(bits.LeadingZeros64(vDelta))          //计算vdelta前置0的个数
    trailing := uint8(bits.TrailingZeros64(vDelta))        //计算vdelta后置0的个数

    // Clamp number of leading zeros to avoid overflow when encoding.
    if leading >= 32 {
        leading = 31
    }

    if a.leading != 0xff && leading >= a.leading && trailing >= a.trailing {
        a.b.writeBit(zero)
        a.b.writeBits(vDelta>>a.trailing, 64-int(a.leading)-int(a.trailing))
    } else {
        a.leading, a.trailing = leading, trailing

        a.b.writeBit(one)
        a.b.writeBits(uint64(leading), 5)

        // Note that if leading == trailing == 0, then sigbits == 64.  But that value doesn't actually fit into the 6 bits we have.
        // Luckily, we never need to encode 0 significant bits, since that would put us in the other case (vdelta == 0).
        // So instead we write out a 0 and adjust it back to 64 on unpacking.
        sigbits := 64 - leading - trailing
        a.b.writeBits(uint64(sigbits), 6)
        a.b.writeBits(vDelta>>trailing, int(sigbits))
    }
}

读取t/v的源码分析

xorIterator负责t/v数据的读取:基本就是写入过程的反过程

// tsdb/chunkenc/xor.go
func (it *xorIterator) Next() bool {
    if it.err != nil || it.numRead == it.numTotal {
        return false
    }
    //读第1个点
    if it.numRead == 0 {
        t, err := binary.ReadVarint(&it.br)    //time原值读取
        if err != nil {
            it.err = err
            return false
        }
        v, err := it.br.readBits(64)    //value原值读取
        if err != nil {
            it.err = err
            return false
        }
        it.t = t
        it.val = math.Float64frombits(v)

        it.numRead++    //读取数量+1
        return true
    }
    //读第2个点
    if it.numRead == 1 {
        tDelta, err := binary.ReadUvarint(&it.br)    //读取tDelta
        if err != nil {
            it.err = err
            return false
        }
        it.tDelta = tDelta
        it.t = it.t + int64(it.tDelta)    //计算time

        return it.readValue()        //读取xor并计算出原值
    }
    //读第3个及以后的点
    var d byte
    //读前缀,最多4bit
    // read delta-of-delta
    for i := 0; i < 4; i++ {
        d <<= 1
        bit, err := it.br.readBit()
        if err != nil {
            it.err = err
            return false
        }
        if bit == zero {
            break
        }
        d |= 1
    }
    var sz uint8
    var dod int64
    switch d {
    case 0x00:
        // dod == 0    //前缀=0
    case 0x02:
        sz = 14    //前缀=10,用14bit保存dod
    case 0x06:     //前缀=110,用17bit保存dod
        sz = 17
    case 0x0e:    //前缀=1110,用20bit保存dod
        sz = 20
    case 0x0f:    //前缀=1111,用64bit保存dod
        bits, err := it.br.readBits(64)
        if err != nil {
            it.err = err
            return false
        }
        dod = int64(bits)
    }

    if sz != 0 {
        bits, err := it.br.readBits(int(sz))
        if err != nil {
            it.err = err
            return false
        }
        if bits > (1 << (sz - 1)) {
            // or something
            bits = bits - (1 << sz)
        }
        dod = int64(bits)    //读取并计算dod的值
    }

    it.tDelta = uint64(int64(it.tDelta) + dod)    //计算tdelta
    it.t = it.t + int64(it.tDelta)    //计算time

    return it.readValue()    //读取xor的值
}

再看一下读xor值的流程:将上一个value与xor的值进行异或

// tsdb/chunkenc/xor.go
func (it *xorIterator) readValue() bool {
    bit, err := it.br.readBit()    //读第1个bit
    if err != nil {
        it.err = err
        return false
    }

    if bit == zero {    //如果第1个bit=0,value保持不变(故无需更新)
        // it.val = it.val
    } else {
        bit, err := it.br.readBit()
        if err != nil {
            it.err = err
            return false
        }
        if bit == zero {
            // reuse leading/trailing zero bits
            // it.leading, it.trailing = it.leading, it.trailing
        } else {
            bits, err := it.br.readBits(5)
            if err != nil {
                it.err = err
                return false
            }
            it.leading = uint8(bits)

            bits, err = it.br.readBits(6)
            if err != nil {
                it.err = err
                return false
            }
            mbits := uint8(bits)
            // 0 significant bits here means we overflowed and we actually need 64; see comment in encoder
            if mbits == 0 {
                mbits = 64
            }
            it.trailing = 64 - it.leading - mbits
        }

        mbits := int(64 - it.leading - it.trailing)
        bits, err := it.br.readBits(mbits)
        if err != nil {
            it.err = err
            return false
        }
        vbits := math.Float64bits(it.val)        //拿到上一个value
        vbits ^= (bits << it.trailing)           //与xor的值进行异或,得到本地的value
        it.val = math.Float64frombits(vbits)     // v1^v2=xor,那么v2=v1^xor
    }

    it.numRead++
    return true
}

a朋
63 声望38 粉丝