Dive Into MindSpore -- TFRecordDataset For Dataset LoadMindSpore易点通·精讲系列--数据集加载之TFRecordDataset本文开发环境Ubuntu 20.04Python 3.8MindSpore 1.7.0本文内容摘要背景介绍先看文档生成TFRecord数据加载本文总结本文参考1. 背景介绍TFRecord格式是TensorFlow官方设计的一种数据格式。TFRecord 格式是一种用于存储二进制记录序列的简单格式,该格式能够更好的利用内存,内部包含多个tf.train.Example,在一个Examples消息体中包含一系列的tf.train.feature属性,而每一个feature是一个key-value的键值对,其中key是string类型,value的取值有三种:bytes_list:可以存储string和byte两种数据类型float_list:可以存储float(float32)和double(float64)两种数据类型int64_list:可以存储bool, enum, int32, uint32, int64, uint64数据类型上面简单介绍了TFRecord的知识,下面我们就要进入正题,来谈谈MindSpore中对TFRecord格式的支持。2. 先看文档老传统,先来看看官方对API的描述。
下面对主要参数做简单介绍:dataset_files -- 数据集文件路径。schema -- 读取模式策略,通俗来说就是要读取的tfrecord文件内的数据内容格式。可以通过json或者Schema传入。默认为None不指定。columns_list -- 指定读取的具体数据列。默认全部读取。num_samples -- 指定读取出来的样本数量。shuffle -- 是否对数据进行打乱,可参考之前的文章解读。3. 生成TFRecord本文使用的是THUCNews数据集,如果需要将该数据集用于商业用途,请联系数据集作者。数据集启智社区下载地址由于下文需要用到TFRecord数据集来做加载,本节先来生成TFRecord数据集。对TensorFlow不了解的读者可以直接照搬代码即可。生成TFRecord代码如下:import codecs
import os
import re
import six
import tensorflow as tf
from collections import Counter
def _int64_feature(values):
"""Returns a TF-Feature of int64s.
Args:
values: A scalar or list of values.
Returns:
A TF-Feature.
"""
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def _float32_feature(values):
"""Returns a TF-Feature of float32s.
Args:
values: A scalar or list of values.
Returns:
A TF-Feature.
"""
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(float_list=tf.train.FloatList(value=values))
def _bytes_feature(values):
"""Returns a TF-Feature of bytes.
Args:
values: A scalar or list of values.
Returns:
A TF-Feature
"""
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(bytes_list=tf.train.BytesList(value=values))
def convert_to_feature(values):
"""Convert to TF-Feature based on the type of element in values.
Args:
values: A scalar or list of values.
Returns:
A TF-Feature.
"""
if not isinstance(values, (tuple, list)):
values = [values]
if isinstance(values[0], int):
return _int64_feature(values)
elif isinstance(values[0], float):
return _float32_feature(values)
elif isinstance(values[0], bytes):
return _bytes_feature(values)
else:
raise ValueError("feature type {0} is not supported now !".format(type(values[0])))
def dict_to_example(dictionary):
"""Converts a dictionary of string->int to a tf.Example."""
features = {}
for k, v in six.iteritems(dictionary):
features[k] = convert_to_feature(values=v)
return tf.train.Example(features=tf.train.Features(feature=features))
def get_txt_files(data_dir):
cls_txt_dict = {}
txt_file_list = []
# get files list and class files list.
sub_data_name_list = next(os.walk(data_dir))[1]
sub_data_name_list = sorted(sub_data_name_list)
for sub_data_name in sub_data_name_list:
sub_data_dir = os.path.join(data_dir, sub_data_name)
data_name_list = next(os.walk(sub_data_dir))[2]
data_file_list = [os.path.join(sub_data_dir, data_name) for data_name in data_name_list]
cls_txt_dict[sub_data_name] = data_file_list
txt_file_list.extend(data_file_list)
num_data_files = len(data_file_list)
print("{}: {}".format(sub_data_name, num_data_files), flush=True)
num_txt_files = len(txt_file_list)
print("total: {}".format(num_txt_files), flush=True)
return cls_txt_dict, txt_file_list
def get_txt_data(txt_file):
with codecs.open(txt_file, "r", "UTF8") as fp:
txt_content = fp.read()
txt_data = re.sub("\s+", " ", txt_content)
return txt_data
def build_vocab(txt_file_list, vocab_size=7000):
counter = Counter()
for txt_file in txt_file_list:
txt_data = get_txt_data(txt_file)
counter.update(txt_data)
num_vocab = len(counter)
if num_vocab < vocab_size - 1:
real_vocab_size = num_vocab + 2
else:
real_vocab_size = vocab_size
# pad_id is 0, unk_id is 1
vocab_dict = {word_freq[0]: ix + 1 for ix, word_freq in enumerate(counter.most_common(real_vocab_size - 2))}
print("real vocab size: {}".format(real_vocab_size), flush=True)
print("vocab dict:\n{}".format(vocab_dict), flush=True)
return vocab_dict
def make_tfrecords(
data_dir, tfrecord_dir, vocab_size=7000, min_seq_length=10, max_seq_length=800,
num_train=8, num_test=2, start_fid=0):
# get txt files
cls_txt_dict, txt_file_list = get_txt_files(data_dir=data_dir)
# map word to id
vocab_dict = build_vocab(txt_file_list=txt_file_list, vocab_size=vocab_size)
# map class to id
class_dict = {class_name: ix for ix, class_name in enumerate(cls_txt_dict.keys())}
train_writers = []
for fid in range(start_fid, num_train+start_fid):
tfrecord_file = os.path.join(tfrecord_dir, "train_{:04d}.tfrecord".format(fid))
writer = tf.io.TFRecordWriter(tfrecord_file)
train_writers.append(writer)
test_writers = []
for fid in range(start_fid, num_test+start_fid):
tfrecord_file = os.path.join(tfrecord_dir, "test_{:04d}.tfrecord".format(fid))
writer = tf.io.TFRecordWriter(tfrecord_file)
test_writers.append(writer)
pad_id = 0
unk_id = 1
num_samples = 0
num_train_samples = 0
num_test_samples = 0
for class_name, class_file_list in cls_txt_dict.items():
class_id = class_dict[class_name]
num_class_pass = 0
for txt_file in class_file_list:
txt_data = get_txt_data(txt_file=txt_file)
txt_len = len(txt_data)
if txt_len < min_seq_length:
num_class_pass += 1
continue
if txt_len > max_seq_length:
txt_data = txt_data[:max_seq_length]
txt_len = max_seq_length
word_ids = []
for word in txt_data:
word_id = vocab_dict.get(word, unk_id)
word_ids.append(word_id)
for _ in range(max_seq_length - txt_len):
word_ids.append(pad_id)
example = dict_to_example({"input": word_ids, "class": class_id})
num_samples += 1
if num_samples % 10 == 0:
num_test_samples += 1
writer_id = num_test_samples % num_test
test_writers[writer_id].write(example.SerializeToString())
else:
num_train_samples += 1
writer_id = num_train_samples % num_train
train_writers[writer_id].write(example.SerializeToString())
print("{} pass: {}".format(class_name, num_class_pass), flush=True)
for writer in train_writers:
writer.close()
for writer in test_writers:
writer.close()
print("num samples: {}".format(num_samples), flush=True)
print("num train samples: {}".format(num_train_samples), flush=True)
print("num test samples: {}".format(num_test_samples), flush=True)
def main():
data_dir = "{your_data_dir}"
tfrecord_dir = "{your_tfrecord_dir}"
make_tfrecords(data_dir=data_dir, tfrecord_dir=tfrecord_dir)
if name == "__main__":
main()
复制将以上代码保存到文件make_tfrecord.py,运行命令:注意:需要替换data_dir和tfrecord_dir为个人目录。python3 make_tfrecord.py
复制使用tree命令查看生成的TFRecord数据目录,输出内容如下:.
├── test_0000.tfrecord
├── test_0001.tfrecord
├── train_0000.tfrecord
├── train_0001.tfrecord
├── train_0002.tfrecord
├── train_0003.tfrecord
├── train_0004.tfrecord
├── train_0005.tfrecord
├── train_0006.tfrecord
└── train_0007.tfrecord
0 directories, 10 files
复制4. 数据加载有了3中的TFRecord数据集,下面来介绍如何在MindSpore中使用该数据集。4.1 schema使用4.1.1 不指定schema首先来看看对于参数schema不指定,即采用默认值的情况下,能否正确读取数据。代码如下:import os
from mindspore.common import dtype as mstype
from mindspore.dataset import Schema
from mindspore.dataset import TFRecordDataset
def get_tfrecord_files(tfrecord_dir, file_suffix="tfrecord", is_train=True):
if not os.path.exists(tfrecord_dir):
raise ValueError("tfrecord directory: {} not exists!".format(tfrecord_dir))
if is_train:
file_prefix = "train"
else:
file_prefix = "test"
data_sources = []
for parent, _, filenames in os.walk(tfrecord_dir):
for filename in filenames:
if not filename.startswith(file_prefix):
continue
tmp_path = os.path.join(parent, filename)
if tmp_path.endswith(file_suffix):
data_sources.append(tmp_path)
return data_sources
def load_tfrecord(tfrecord_dir, tfrecord_json=None):
tfrecord_files = get_tfrecord_files(tfrecord_dir)
# print("tfrecord files:\n{}".format("\n".join(tfrecord_files)), flush=True)
dataset = TFRecordDataset(dataset_files=tfrecord_files, shuffle=False)
data_iter = dataset.create_dict_iterator()
for item in data_iter:
print(item, flush=True)
break
def main():
tfrecord_dir = "{your_tfrecord_dir}"
tfrecord_json = "{your_tfrecord_json_file}"
load_tfrecord(tfrecord_dir=tfrecord_dir, tfrecord_json=None)
if name == "__main__":
main()
复制代码解读:get_tfrecord_files -- 获取指定的TFRecord文件列表load_tfrecord -- 数据集加载将上述代码保存到文件load_tfrecord_dataset.py,运行如下命令:python3 load_tfrecord_dataset.py
复制输出内容如下:可以看出能正确解析出之前保存在TFRecord内的数据,数据类型和数据维度解析正确。{'class': Tensor(shape=[1], dtype=Int64, value= [0]), 'input': Tensor(shape=[800], dtype=Int64, value= [1719, 636, 1063, 18,
......
135, 979, 1, 35, 166, 181, 90, 143])}
复制4.1.2 使用Schema对象下面介绍,如何使用mindspore.dataset.Schema来指定读取模型策略。修改load_tfrecord代码如下:def load_tfrecord(tfrecord_dir, tfrecord_json=None):
tfrecord_files = get_tfrecord_files(tfrecord_dir)
# print("tfrecord files:\n{}".format("\n".join(tfrecord_files)), flush=True)
data_schema = Schema()
data_schema.add_column(name="input", de_type=mstype.int64, shape=[800])
data_schema.add_column(name="class", de_type=mstype.int64, shape=[1])
dataset = TFRecordDataset(dataset_files=tfrecord_files, schema=data_schema, shuffle=False)
data_iter = dataset.create_dict_iterator()
for item in data_iter:
print(item, flush=True)
break
复制代码解读:这里使用了Schema对象,并且指定了列名,列的数据类型和数据维度。保存并再次运行文件load_tfrecord_dataset.py,输出内容如下:可以看出能正确解析出之前保存在TFRecord内的数据,数据类型和数据维度解析正确。{'input': Tensor(shape=[800], dtype=Int64, value= [1719, 636, 1063, 18, 742, 330, 385, 999, 837, 56, 529, 1000,
.....
135, 979, 1, 35, 166, 181, 90, 143]), 'class': Tensor(shape=[1], dtype=Int64, value= [0])}
复制4.1.3 使用JSON文件下面介绍,如何使用JSON文件来指定读取模型策略。新建tfrecord_sample.json文件,在文件内写入如下内容:numRows -- 数据列数columns -- 依次为每列的列名、数据类型、数据维数、数据维度。{
"datasetType": "TF",
"numRows": 2,
"columns": {
"input": {
"type": "int64",
"rank": 1,
"shape": [800]
},
"class" : {
"type": "int64",
"rank": 1,
"shape": [1]
}
}
}
复制有了相应的JSON文件,下面来介绍如何使用该文件进行数据读取。修改load_tfrecord代码如下:def load_tfrecord(tfrecord_dir, tfrecord_json=None):
tfrecord_files = get_tfrecord_files(tfrecord_dir)
# print("tfrecord files:\n{}".format("\n".join(tfrecord_files)), flush=True)
dataset = TFRecordDataset(dataset_files=tfrecord_files, schema=tfrecord_json, shuffle=False)
data_iter = dataset.create_dict_iterator()
for item in data_iter:
print(item, flush=True)
break
复制同时修改main部分代码如下:load_tfrecord(tfrecord_dir=tfrecord_dir, tfrecord_json=tfrecord_json)
复制代码解读这里直接将schema参数指定为JSON的文件路径保存并再次运行文件load_tfrecord_dataset.py,输出内容如下:{'class': Tensor(shape=[1], dtype=Int64, value= [0]), 'input': Tensor(shape=[800], dtype=Int64, value= [1719, 636, 1063, 18, ......
135, 979, 1, 35, 166, 181, 90, 143])}
复制4.2 columns_list使用在某些场景下,我们可能只需要某(几)列的数据,而非全部数据,这时候就可以通过制定columns_list来进行数据加载。下面我们只读取class列,来简单看看如何操作。在4.1.2基础上,修改load_tfrecord代码如下:def load_tfrecord(tfrecord_dir, tfrecord_json=None):
tfrecord_files = get_tfrecord_files(tfrecord_dir)
# print("tfrecord files:\n{}".format("\n".join(tfrecord_files)), flush=True)
data_schema = Schema()
data_schema.add_column(name="input", de_type=mstype.int64, shape=[800])
data_schema.add_column(name="class", de_type=mstype.int64, shape=[1])
dataset = TFRecordDataset(dataset_files=tfrecord_files, schema=data_schema, columns_list=["class"], shuffle=False)
data_iter = dataset.create_dict_iterator()
for item in data_iter:
print(item, flush=True)
break
复制保存并再次运行文件load_tfrecord_dataset.py,输出内容如下:可以看到只读取了我们指定的列,且数据加载正确。{'class': Tensor(shape=[1], dtype=Int64, value= [0])}
复制5. 本文总结本文介绍了在MindSpore中如何加载TFRecord数据集,并重点介绍了TFRecordDataset中的schema和columns_list参数使用。6. 本文参考THUCTC: 一个高效的中文文本分类工具包THUCNews数据集TFRecordDataset API本文为原创文章,版权归作者所有,未经授权不得转载!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。