本文所有教程及源码、软件仅为技术研究。不涉及计算机信息系统功能的删除、修改、增加、干扰,更不会影响计算机信息系统的正常运行。不得将代码用于非法用途,如侵立删!多缺口滑块验证demo环境win10Python3.9
分享一下项目中碰到的一个多缺口滑块验证,先触发一下滑块抓包分析一下是用的哪一家滑块
经过分析发现不是用的顶象或数美,验证图片的接口地址是他自己的的一个接口,应该是自己写的验证,往有经验的大佬指点下。
抓到滑块图片地址,是经过加密的,通过canvas绘画至页面,始终没有找到真实的url,用最笨的方法直接在页面截图
def get_v3(self): # 新开一个窗口,通过执行js来新开一个窗口(有奇效,可以不被检测到) js = 'window.open("https://www.vivo.com.cn/service/mobilePhoneAuthenticityCheck/query");' self.driver.execute_script(js) # 切换窗口 self.driver.switch_to.window(self.driver.window_handles[1]) IMEI = "862056063123458" # 定位输入框 phone_IMEI = self.wait.until(EC.presence_of_element_located((By.XPATH, '//[@id="phone_IMEI"]'))) phone_IMEI.send_keys(IMEI) # 勾选复选框 self.wait.until(EC.presence_of_element_located((By.XPATH, '/html/body/main/div[2]/div/p/span'))).click() # 点击立即查询 self.wait.until(EC.presence_of_element_located((By.XPATH, '//[@id="query_IMEI"]'))).click() # 定位滑块图片 # 必须先遍历一遍页面所有元素,否则找不到新弹出的滑块元素 self.web_driver_wait_ruishu(10, "class", 'dx_captcha dx_captcha_loading-style-popup dx_captcha_basic dx_captcha-type-basic dx_captcha_basic-style-popup') print("定位到滑块弹窗") dx_captcha = self.wait.until(EC.presence_of_all_elements_located((By.XPATH, '/html/body/div/div/div[2]/div[2]/div[1]/div[2]/div[2]'))) print(len(dx_captcha)) if len(dx_captcha) > 1: dx_captcha = dx_captcha[-1] else: dx_captcha = dx_captcha[0] # 截图 dx_captcha.screenshot(self.bgImg_path)
剩下的就是识别缺口距离了,并生成移动轨迹@staticmethod def clear_white(img): """清除图片的空白区域,这里主要清除滑块的空白""" img = cv2.imread(img) rows, cols, channel = img.shape min_x = 255 min_y = 255 max_x = 0 max_y = 0 for x in range(1, rows): for y in range(1, cols): t = set(img[x, y]) if len(t) >= 2: if x <= min_x: min_x = x elif x >= max_x: max_x = x if y <= min_y: min_y = y elif y >= max_y: max_y = y img1 = img[min_x:max_x, min_y: max_y] return img1 @staticmethod def template_match(tpl, target): th, tw = tpl.shape[:2] result = cv2.matchTemplate(target, tpl, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) tl = max_loc br = (tl[0] + tw, tl[1] + th) cv2.rectangle(target, tl, br, (0, 0, 255), 2) return tl[0], tl[1] def calculate_distance(self, pic1_path, pic2_path): """ 计算滑块到缺口的距离 """ img1 = self.clear_white(pic1_path) img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY) slide = cv2.Canny(img1, 100, 200) img2 = cv2.imread(pic2_path, 0) back = cv2.Canny(img2, 100, 200) slide_pic = cv2.cvtColor(slide, cv2.COLOR_GRAY2RGB) back_pic = cv2.cvtColor(back, cv2.COLOR_GRAY2RGB) # 滑块在图片上的位置 x, y = self.template_match(slide_pic, back_pic) # 滑块到缺口的距离 dis_x = int((x + 5) (340 / 552)) dis_y = int(y (340 / 552)) return dis_x, dis_y def get_tracks(self, distance, _y): """ 获取轨迹参数 """ tracks = list() y, v, t, current = 0, 0, 1, 0 mid = distance 3 / 4 exceed = random.randint(40, 90) z = random.randint(30, 150) while current < (distance + exceed): if current < mid / 2: a = 2 elif current < mid: a = 3 else: a = -3 a /= 2 v0 = v s = v0 t + 0.5 a (t t) current += int(s) v = v0 + a t y += random.randint(-3, 3) z = z + random.randint(5, 10) tracks.append([min(current, (distance + exceed)), y, z]) while exceed > 0: exceed -= random.randint(0, 5) y += random.randint(-3, 3) z = z + random.randint(5, 9) tracks.append([min(current, (distance + exceed)), y, z]) tr = [] for i, x in enumerate(tracks): tr.append({ 'x': x[0], 'y': _y, 'relative_time': x[2] }) return tr效果
本文仅供学习交流使用,如侵立删!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。