我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?”

在开发过程中,我很确定我们大多数人都会想知道这一点,而且通常情况下存在开发空间。在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。

本文将介绍4种方法,前3种方法提供时间信息,第4个方法可以获得内存使用情况。

  • time 模块
  • %%time 魔法命令
  • line_profiler
  • memory_profiler

time 模块

这是计算代码运行所需时间的最简单、最直接(但需要手动开发)的方法。他的逻辑也很简单:记录代码运行之前和之后的时间,计算时间之间的差异。这可以实现如下:

 importtime
 
 start_time=time.time()
 result=5+2
 end_time=time.time()
 
 print('Time taken = {} sec'.format(end_time-start_time))

下面的例子显示了for循环和列表推导式在时间上的差异:

 importtime
 
 # for loop vs. list comp
 list_comp_start_time=time.time()
 result= [iforiinrange(0,1000000)]
 list_comp_end_time=time.time()
 print('Time taken for list comp = {} sec'.format(list_comp_end_time-list_comp_start_time))
 
 result=[]
 for_loop_start_time=time.time()
 foriinrange(0,1000000):
     result.append(i)
 for_loop_end_time=time.time()
 print('Time taken for for-loop = {} sec'.format(for_loop_end_time-for_loop_start_time))
 
 list_comp_time=list_comp_end_time-list_comp_start_time
 for_loop_time=for_loop_end_time-for_loop_start_time
 print('Difference = {} %'.format((for_loop_time-list_comp_time)/list_comp_time*100))

我们都知道for会慢一些

 Time taken for list comp = 0.05843973159790039 sec
 Time taken for for-loop = 0.06774497032165527 sec
 Difference = 15.922795107582594 %

%%time 魔法命令

魔法命令是IPython内核中内置的方便命令,可以方便地执行特定的任务。一般情况下都实在jupyter notebook种使用。

在单元格的开头添加%%time ,单元格执行完成后,会输出单元格执行所花费的时间。

 %%time
 defconvert_cms(cm, unit='m'):
     '''
     Function to convert cm to m or feet
     '''
     ifunit=='m':
         returncm/100
     returncm/30.48
 
 convert_cms(1000)

结果如下:

 CPU times: user 24 µs, sys: 1 µs, total: 25 µs
 Wall time: 28.1 µs
 
 Out[8]: 10.0

这里的CPU times是CPU处理代码所花费的实际时间,Wall time是事件经过的真实时间,在方法入口和方法出口之间的时间。

line_profiler

前两个方法只提供执行该方法所需的总时间。通过时间分析器我们可以获得函数中每一个代码的运行时间。

这里我们需要使用line_profiler包。使用pip install line_profiler。

 importline_profiler
 
 defconvert_cms(cm, unit='m'):
     '''
     Function to convert cm to m or feet
     '''
     ifunit=='m':
         returncm/100
     returncm/30.48
 
 # Load the profiler
 %load_extline_profiler
 
 # Use the profiler's magic to call the method
 %lprun-fconvert_cmsconvert_cms(1000, 'f')

输出结果如下:

 Timer unit: 1e-06 s
 
 Total time: 4e-06 s
 File: /var/folders/y_/ff7_m0c146ddrr_mctd4vpkh0000gn/T/ipykernel_22452/382784489.py
 Function: convert_cms at line 1
 
 Line #      Hits         Time  Per Hit   % Time  Line Contents
 ==============================================================
      1                                           def convert_cms(cm, unit='m'):
      2                                               '''
      3                                               Function to convert cm to m or feet
      4                                               '''
      5         1          2.0      2.0     50.0      if unit == 'm':
      6                                                   return cm/100
      7         1          2.0      2.0     50.0      return cm/30.48

可以看到line_profiler提供了每行代码所花费时间的详细信息。

  • Line Contents :运行的代码
  • Hits:行被执行的次数
  • Time:所花费的总时间(即命中次数x每次命中次数)
  • Per Hit:一次执行花费的时间,也就是说 Time = Hits X Per Hit
  • % Time:占总时间的比例

可以看到,每一行代码都详细的分析了时间,这对于我们分析时间相当的有帮助。

memory_profiler

与line_profiler类似,memory_profiler提供代码的逐行内存使用情况。

要安装它需要使用pip install memory_profiler。我们这里监视convert_cms_f函数的内存使用情况

 from conversions import convert_cms_f
 import memory_profiler
 
 %load_ext memory_profiler
 
 %mprun -f convert_cms_f convert_cms_f(1000, 'f')

convert_cms_f函数在单独的文件中定义,然后导入。结果如下:

 Line #    Mem usage    Increment  Occurrences   Line Contents
 =============================================================
      1     63.7 MiB     63.7 MiB           1   def convert_cms_f(cm, unit='m'):
      2                                             '''
      3                                             Function to convert cm to m or feet
      4                                             '''
      5     63.7 MiB      0.0 MiB           1       if unit == 'm':
      6                                                 return cm/100
      7     63.7 MiB      0.0 MiB           1       return cm/30.48

memory_profiler 提供对每行代码内存使用情况的详细了解。

这里的1 MiB (MebiByte) 几乎等于 1MB。1 MiB = 1.048576 1MB

但是memory_profiler 也有一些缺点:它通过查询操作系统内存,所以结果可能与 python 解释器略有不同,如果在会话中多次运行 %mprun,可能会注意到增量列报告所有代码行为 0.0 MiB。这是因为魔法命令的限制导致的。

虽然memory_profiler有一些问题,但是它就使我们能够清楚地了解内存使用情况,对于开发来说是一个非常好用的工具

总结

虽然Python并不是一个以执行效率见长的语言,但是在某些特殊情况下这些命令对我们还是非常有帮助的。

https://avoid.overfit.cn/post/9204bf68886e4353a32578f87fd977d2

作者:Rishikeshavan


deephub
119 声望91 粉丝