作者|KIDGINBROOK
更新|潘丽晨
上节介绍所有节点执行了bootstrap网络连接的建立,接下来介绍下拓扑分析。
由于GPU机器架构是多种多样的,一台机器上可能有多个网卡,多个GPU卡,卡间连接也各不相同,因此需要对机器内设备连接拓扑进行分析,以使性能在各种拓扑结构下都尽可能好。
接着上回继续看initTransportsRank。
static ncclResult_t initTransportsRank(struct ncclComm* comm, ncclUniqueId* commId) {
// We use 3 AllGathers
// 1. { peerInfo, comm }
// 2. ConnectTransport[nranks], ConnectValue[nranks]
// 3. { nThreads, nrings, compCap, prev[MAXCHANNELS], next[MAXCHANNELS] }
int rank = comm->rank;
int nranks = comm->nRanks;
uint64_t commHash = getHash(commId->internal, NCCL_UNIQUE_ID_BYTES);
TRACE(NCCL_INIT, "comm %p, commHash %lx, rank %d nranks %d - BEGIN", comm, commHash, rank, nranks);
NCCLCHECK(bootstrapInit(commId, rank, nranks, &comm->bootstrap));
// AllGather1 - begin
struct {
struct ncclPeerInfo peerInfo;
struct ncclComm* comm;
} *allGather1Data;
NCCLCHECK(ncclCalloc(&allGather1Data, nranks));
allGather1Data[rank].comm = comm;
struct ncclPeerInfo* myInfo = &allGather1Data[rank].peerInfo;
NCCLCHECK(fillInfo(comm, myInfo, commHash));
...
}
创建nrank个allGather1Data,然后通过fillInfo 填充当前rank的peerInfo,ncclPeerInfo是rank的一些基本信息,比如rank号,在哪个机器的哪个进程等。
struct ncclPeerInfo {
int rank;
int cudaDev;
int gdrSupport;
uint64_t hostHash;
uint64_t pidHash;
dev_t shmDev;
int64_t busId;
};
static ncclResult_t fillInfo(struct ncclComm* comm, struct ncclPeerInfo* info, uint64_t commHash) {
info->rank = comm->rank;
CUDACHECK(cudaGetDevice(&info->cudaDev));
info->hostHash=getHostHash()+commHash;
info->pidHash=getPidHash()+commHash;
// Get the device MAJOR:MINOR of /dev/shm so we can use that
// information to decide whether we can use SHM for inter-process
// communication in a container environment
struct stat statbuf;
SYSCHECK(stat("/dev/shm", &statbuf), "stat");
info->shmDev = statbuf.st_dev;
info->busId = comm->busId;
NCCLCHECK(ncclGpuGdrSupport(&info->gdrSupport));
return ncclSuccess;
}
获取当前卡的rank,PCIe busId,/dev/shm的设备号,填充到ncclPeerInfo,然后通过ncclGpuGdrSupport查看是否支持gdr,rdma在通信前需要注册一段内存,使得网卡知道虚拟地址和物理地址的映射,但是如果每次通信都需要将data从显存拷贝到内存再通信的话效率就比较低。
而IB提供了peer memory的接口,使得ib网卡可以访问其他PCIe空间,nv基于peer memory实现了自己的驱动,使得rdma可以直接注册显存,这样通信就可以避免host和device的内存拷贝,IB可以直接dma显存,即gdr。
static ncclResult_t ncclGpuGdrSupport(int* gdrSupport) {
int netDevs;
NCCLCHECK(ncclNetDevices(&netDevs));
*gdrSupport = 0;
for (int dev=0; dev<netDevs; dev++) {
// Find a net device which is GDR-capable
ncclNetProperties_t props;
NCCLCHECK(ncclNet->getProperties(dev, &props));
if ((props.ptrSupport & NCCL_PTR_CUDA) == 0) continue;
// Allocate memory on the GPU and try to register it on the NIC.
void *lComm = NULL, *sComm = NULL, *rComm = NULL;
ncclNetHandle_t handle;
void* gpuPtr = NULL;
void* mHandle = NULL;
NCCLCHECK(ncclNetListen(dev, &handle, &lComm));
NCCLCHECK(ncclNetConnect(dev, &handle, &sComm));
NCCLCHECK(ncclNetAccept(lComm, &rComm));
CUDACHECK(cudaMalloc(&gpuPtr, GPU_BUF_SIZE));
ncclDebugNoWarn = NCCL_NET;
if (ncclNetRegMr(sComm, gpuPtr, GPU_BUF_SIZE, NCCL_PTR_CUDA, &mHandle) == ncclSuccess) {
NCCLCHECK(ncclNetDeregMr(sComm, mHandle));
NCCLCHECK(ncclNetRegMr(rComm, gpuPtr, GPU_BUF_SIZE, NCCL_PTR_CUDA, &mHandle));
NCCLCHECK(ncclNetDeregMr(rComm, mHandle));
*gdrSupport = 1;
}
ncclDebugNoWarn = 0;
CUDACHECK(cudaFree(gpuPtr));
NCCLCHECK(ncclNetCloseRecv(rComm));
NCCLCHECK(ncclNetCloseSend(sComm));
NCCLCHECK(ncclNetCloseListen(lComm));
break;
}
return ncclSuccess;
}
这里会遍历每一个网卡,获取网卡的信息,由第一节可以知道这里的ncclNet就是ncclNetIb。
ncclResult_t ncclIbGdrSupport(int ibDev) {
static int moduleLoaded = -1;
if (moduleLoaded == -1) {
moduleLoaded = (access("/sys/kernel/mm/memory_peers/nv_mem/version", F_OK) == -1) ? 0 : 1;
}
if (moduleLoaded == 0) return ncclSystemError;
return ncclSuccess;
}
ncclResult_t ncclIbGetProperties(int dev, ncclNetProperties_t* props) {
props->name = ncclIbDevs[dev].devName;
props->pciPath = ncclIbDevs[dev].pciPath;
props->guid = ncclIbDevs[dev].guid;
props->ptrSupport = NCCL_PTR_HOST;
if (ncclIbGdrSupport(dev) != ncclSuccess) {
INFO(NCCL_NET,"NET/IB : GPU Direct RDMA Disabled for HCA %d '%s' (no module)", dev, ncclIbDevs[dev].devName);
} else {
props->ptrSupport |= NCCL_PTR_CUDA;
}
props->speed = ncclIbDevs[dev].speed;
props->port = ncclIbDevs[dev].port + ncclIbDevs[dev].realPort;
props->maxComms = ncclIbDevs[dev].maxQp;
return ncclSuccess;
}
这里主要是获取网卡名,PCIe路径,guid等信息,然后查看是否有/sys/kernel/mm/memory_peers/nv_mem/version判断是否安装了nv_peermem,即nv的驱动,如果安装了的话则设置props->ptrSupport |= NCCL_PTR_CUDA,表示可以注册显存。
然后尝试注册显存,如果可以注册则设置gdrSupport为1,这里其实会创建rdma连接,这个在后边会单独介绍,本次先略过
static ncclResult_t initTransportsRank(struct ncclComm* comm, ncclUniqueId* commId) {
...
NCCLCHECK(bootstrapAllGather(comm->bootstrap, allGather1Data, sizeof(*allGather1Data)));
NCCLCHECK(ncclCalloc(&comm->peerInfo, nranks+1)); // Extra rank to represent CollNet root
for (int i = 0; i < nranks; i++) {
memcpy(comm->peerInfo+i, &allGather1Data[i].peerInfo, sizeof(struct ncclPeerInfo));
if ((i != rank) && (comm->peerInfo[i].hostHash == myInfo->hostHash) && (comm->peerInfo[i].busId == myInfo->busId)) {
WARN("Duplicate GPU detected : rank %d and rank %d both on CUDA device %x", rank, i, myInfo->busId);
return ncclInvalidUsage;
}
}
// AllGather1 data is used again below
// AllGather1 - end
// Topo detection / System graph creation
NCCLCHECK(ncclTopoGetSystem(comm, &comm->topo));
...
}
然后bootstrapAllGather广播allGather1Data,将获取到的其他节点peerinfo拷贝到comm里。
在看具体拓扑分析流程之前先简单了解一下PCIe的一些概念,一个简单的PCIe系统示例如下。
每个CPU都有自己的root complex,后简称为RC,RC会帮助cpu和其他部分通信,比如和内存,和PCIe系统,当cpu发送过来一个物理地址之后,如果这个地址是在PCIe空间,会被RC转换成PCIe请求进行通信。
switch的作用是扩展PCIe端口,下边可以连接设备或者其他switch,上游来的请求被被他转发,PCIe设备可以连在RC,也可以连在swtich,一个switch的内部如下所示
内部有一个PCIe总线 ,然后通过多个Bridge扩展出多个端口,其中上边的那个称为上游端口,其他的叫做下游端口。
前文有提到NCCL中很常用的一个变量名叫busId,比如gpu和ib网卡,注意区分NCCL里的busId并不是指的总线号,指的其实是定位一个PCIe设备用到的id,即BDF(bus + device + function),一个bus上有多个设备,一个设备有多个功能,因此通过BDF就可以定位一个设备,在机器启动完成PCIe的配置之后会将相关信息通过sysfs提供给用户,NCCL就是通过sysfs来完成拓扑检测的。
然后看下执行的ncclTopoGetSystem,这个函数就是本节的重点,会将当前rank的PCI树建立起来,分为两个步骤,先使用xml表示整个PCI树结构,然后基于xml转成ncclTopoNode,其中xml定义如下,一个ncclXmlNode表示了PCI树的一个节点。
struct ncclXmlNode {
char name[MAX_STR_LEN];
struct {
char key[MAX_STR_LEN];
char value[MAX_STR_LEN];
} attrs[MAX_ATTR_COUNT+1]; // Need an extra one to consume extra params
int nAttrs;
int type;
struct ncclXmlNode* parent;
struct ncclXmlNode* subs[MAX_SUBS];
int nSubs;
};
struct ncclXml {
struct ncclXmlNode nodes[MAX_NODES];
int maxIndex;
};
ncclXmlNode表示一个节点,记录了父节点和所有子节点,节点有name和attr,通过xmlSetAttr进行设置属性。
ncclXml中预分配了所有的node,maxIndex表示分配到了哪里,然后简单介绍下几个xml相关的api。
static ncclResult_t xmlAddNode(struct ncclXml* xml, struct ncclXmlNode* parent, const char* subName, struct ncclXmlNode** sub);
xmlAddNode进行node的分配,表示在xml里新申请一个节点sub,sub的name设置为subName,父节点为parent。
static ncclResult_t xmlFindTagKv(struct ncclXml* xml, const char* tagName, struct ncclXmlNode** node, const char* attrName, const char* attrValue)
xmlFindTagKv会遍历xml已分配的节点,找到节点名为tagName的节点n,然后判断节点n["attrName"]是否等于attrValue,如果相等,则设置node为n。
static ncclResult_t xmlGetAttrIndex(struct ncclXmlNode* node, const char* attrName, int* index)
xmlGetAttrIndex会查看attrName是node的第几个属性。
然后开始看拓扑分析的过程。
ncclResult_t ncclTopoGetSystem(struct ncclComm* comm, struct ncclTopoSystem** system) {
struct ncclXml* xml;
NCCLCHECK(ncclCalloc(&xml, 1));
char* xmlTopoFile = getenv("NCCL_TOPO_FILE");
if (xmlTopoFile) {
INFO(NCCL_ENV, "NCCL_TOPO_FILE set by environment to %s", xmlTopoFile);
NCCLCHECK(ncclTopoGetXmlFromFile(xmlTopoFile, xml));
}
if (xml->maxIndex == 0) {
// Create top tag
struct ncclXmlNode* top;
NCCLCHECK(xmlAddNode(xml, NULL, "system", &top));
NCCLCHECK(xmlSetAttrInt(top, "version", NCCL_TOPO_XML_VERSION));
}
// Auto-detect GPUs if needed
for (int r=0; r<comm->nRanks; r++) {
if (comm->peerInfo[r].hostHash == comm->peerInfo[comm->rank].hostHash) {
char busId[NVML_DEVICE_PCI_BUS_ID_BUFFER_SIZE];
NCCLCHECK(int64ToBusId(comm->peerInfo[r].busId, busId));
struct ncclXmlNode* node;
NCCLCHECK(ncclTopoFillGpu(xml, busId, &node));
if (node == NULL) continue;
NCCLCHECK(xmlSetAttrInt(node, "rank", r));
NCCLCHECK(xmlInitAttrInt(node, "gdr", comm->peerInfo[r].gdrSupport));
}
}
...
}
首先通过xmlAddNode创建根节点"system"(后续使用双引号表示xml树节点),并设置根节点属性"system" ["version"] = NCCL_TOPO_XML_VERSION,然后遍历每个rank的hosthash,如果相等的话说明在同一个机器,然后执行ncclTopoFillGpu,将gpu加入到xml树。
ncclResult_t ncclTopoFillGpu(struct ncclXml* xml, const char* busId, struct ncclXmlNode** gpuNode) {
struct ncclXmlNode* node;
NCCLCHECK(ncclTopoGetPciNode(xml, busId, &node));
NCCLCHECK(ncclTopoGetXmlFromSys(node, xml));
...
}
ncclResult_t ncclTopoGetPciNode(struct ncclXml* xml, const char* busId, struct ncclXmlNode** pciNode) {
NCCLCHECK(xmlFindTagKv(xml, "pci", pciNode, "busid", busId));
if (*pciNode == NULL) {
NCCLCHECK(xmlAddNode(xml, NULL, "pci", pciNode));
}
NCCLCHECK(xmlSetAttr(*pciNode, "busid", busId));
return ncclSuccess;
}
通过ncclTopoGetPciNode获取xml中的有没有创建当前卡的xml node,此时没有,所以就新建一个xml node叫做"pci",表示当前gpu卡,设置"pci"["busid"]=busd。
然后执行ncclTopoGetXmlFromSys,这个函数主要逻辑就是在sysfs中获取gpu节点到cpu的路径,通过这个路径转成xml树,并读取该路径下相关属性设置到xml里。
ncclResult_t ncclTopoGetXmlFromSys(struct ncclXmlNode* pciNode, struct ncclXml* xml) {
// Fill info, then parent
const char* busId;
NCCLCHECK(xmlGetAttr(pciNode, "busid", &busId));
char* path = NULL;
int index;
NCCLCHECK(xmlGetAttrIndex(pciNode, "class", &index));
if (index == -1) {
if (path == NULL) NCCLCHECK(getPciPath(busId, &path));
NCCLCHECK(ncclTopoSetAttrFromSys(pciNode, path, "class", "class"));
}
NCCLCHECK(xmlGetAttrIndex(pciNode, "link_speed", &index));
if (index == -1) {
if (path == NULL) NCCLCHECK(getPciPath(busId, &path));
char deviceSpeedStr[MAX_STR_LEN];
float deviceSpeed;
NCCLCHECK(ncclTopoGetStrFromSys(path, "max_link_speed", deviceSpeedStr));
sscanf(deviceSpeedStr, "%f GT/s", &deviceSpeed);
char portSpeedStr[MAX_STR_LEN];
float portSpeed;
NCCLCHECK(ncclTopoGetStrFromSys(path, "../max_link_speed", portSpeedStr));
sscanf(portSpeedStr, "%f GT/s", &portSpeed);
NCCLCHECK(xmlSetAttr(pciNode, "link_speed", portSpeed < deviceSpeed ? portSpeedStr : deviceSpeedStr));
}
NCCLCHECK(xmlGetAttrIndex(pciNode, "link_width", &index));
if (index == -1) {
if (path == NULL) NCCLCHECK(getPciPath(busId, &path));
char strValue[MAX_STR_LEN];
NCCLCHECK(ncclTopoGetStrFromSys(path, "max_link_width", strValue));
int deviceWidth = strtol(strValue, NULL, 0);
NCCLCHECK(ncclTopoGetStrFromSys(path, "../max_link_width", strValue));
int portWidth = strtol(strValue, NULL, 0);
NCCLCHECK(xmlSetAttrInt(pciNode, "link_width", std::min(deviceWidth,portWidth)));
}
...
}
首先设置pciNode的各种属性,通过getPciPath获取busId对应的sysfs路径path,其实这个路径就是PCI树中根到叶结点的路径。
static ncclResult_t getPciPath(const char* busId, char** path) {
char busPath[] = "/sys/class/pci_bus/0000:00/../../0000:00:00.0";
memcpylower(busPath+sizeof("/sys/class/pci_bus/")-1, busId, BUSID_REDUCED_SIZE-1);
memcpylower(busPath+sizeof("/sys/class/pci_bus/0000:00/../../")-1, busId, BUSID_SIZE-1);
*path = realpath(busPath, NULL);
if (*path == NULL) {
WARN("Could not find real path of %s", busPath);
return ncclSystemError;
}
return ncclSuccess;
}
举个例子比如path是 /sys/devices/pci0000:10/0000:10:00.0/0000:11:00.0/0000:12:00.0/0000:13:00.0/0000
:14:00.0/0000:15:00.0/0000:16:00.0/0000:17:00.0,其中GPU的busId是0000:17:00.0,那么这个path对应下图,注意,下图略去了15:00.0对应的switch。
然后读取path下的属性,获取class(PCI设备类型),link_speed,link_width等设置到xml pciNode中,ncclTopoGetStrFromSys其实就是读取path下的内核文件保存到strValue。
ncclResult_t ncclTopoGetStrFromSys(const char* path, const char* fileName, char* strValue) {
char filePath[PATH_MAX];
sprintf(filePath, "%s/%s", path, fileName);
int offset = 0;
FILE* file;
if ((file = fopen(filePath, "r")) != NULL) {
while (feof(file) == 0 && ferror(file) == 0 && offset < MAX_STR_LEN) {
int len = fread(strValue+offset, 1, MAX_STR_LEN-offset, file);
offset += len;
}
fclose(file);
}
if (offset == 0) {
strValue[0] = '\0';
INFO(NCCL_GRAPH, "Topology detection : could not read %s, ignoring", filePath);
} else {
strValue[offset-1] = '\0';
}
return ncclSuccess;
}
ncclResult_t ncclTopoGetXmlFromSys(struct ncclXmlNode* pciNode, struct ncclXml* xml) {
// Fill info, then parent
...
struct ncclXmlNode* parent = pciNode->parent;
if (parent == NULL) {
if (path == NULL) NCCLCHECK(getPciPath(busId, &path));
// Save that for later in case next step is a CPU
char numaIdStr[MAX_STR_LEN];
NCCLCHECK(ncclTopoGetStrFromSys(path, "numa_node", numaIdStr));
// Go up one level in the PCI tree. Rewind two "/" and follow the upper PCI
// switch, or stop if we reach a CPU root complex.
int slashCount = 0;
int parentOffset;
for (parentOffset = strlen(path)-1; parentOffset>0; parentOffset--) {
if (path[parentOffset] == '/') {
slashCount++;
path[parentOffset] = '\0';
int start = parentOffset - 1;
while (start>0 && path[start] != '/') start--;
// Check whether the parent path looks like "BBBB:BB:DD.F" or not.
if (checkBDFFormat(path+start+1) == 0) {
// This a CPU root complex. Create a CPU tag and stop there.
struct ncclXmlNode* topNode;
NCCLCHECK(xmlFindTag(xml, "system", &topNode));
NCCLCHECK(xmlGetSubKv(topNode, "cpu", &parent, "numaid", numaIdStr));
if (parent == NULL) {
NCCLCHECK(xmlAddNode(xml, topNode, "cpu", &parent));
NCCLCHECK(xmlSetAttr(parent, "numaid", numaIdStr));
}
} else if (slashCount == 2) {
// Continue on the upper PCI switch
for (int i = strlen(path)-1; i>0; i--) {
if (path[i] == '/') {
NCCLCHECK(xmlFindTagKv(xml, "pci", &parent, "busid", path+i+1));
if (parent == NULL) {
NCCLCHECK(xmlAddNode(xml, NULL, "pci", &parent));
NCCLCHECK(xmlSetAttr(parent, "busid", path+i+1));
}
break;
}
}
}
}
if (parent) break;
}
pciNode->parent = parent;
parent->subs[parent->nSubs++] = pciNode;
}
if (strcmp(parent->name, "pci") == 0) {
NCCLCHECK(ncclTopoGetXmlFromSys(parent, xml));
} else if (strcmp(parent->name, "cpu") == 0) {
NCCLCHECK(ncclTopoGetXmlFromCpu(parent, xml));
}
free(path);
return ncclSuccess;
}
然后从pciNode开始往上跳,因为一个switch的上游端口和下游端口分别对应了一个bridge,NCCL使用上游端口bridge的busid表示这个switch,因此这里要向上跳两次再建立一个xml node表示这个switch,往上找到一个PCI设备就将slashCount加一
当slashCount==2就找到了一个switch上游端口,这个时候创建一个新的xml pci节点parent表示当前switch,然后将当前节点pciNode链接到parent,此时parent仍然是xml pci节点。
因此,继续递归执行ncclTopoGetXmlFromSys,直到遇到RC,此时给"system"创建一个子节点"cpu",停止递归,然后执行ncclTopoGetXmlFromCpu,设置"cpu"的各种属性,比如arch(比如x86还是arm),affinity(该cpu的numa都有哪些cpu core),numaid等。
到这里ncclTopoGetXmlFromSys就执行结束了,接着看ncclTopoFillGpu。
ncclResult_t ncclTopoFillGpu(struct ncclXml* xml, const char* busId, struct ncclXmlNode** gpuNode) {
...
NCCLCHECK(wrapNvmlSymbols());
NCCLCHECK(wrapNvmlInit());
nvmlDevice_t nvmlDev;
if (wrapNvmlDeviceGetHandleByPciBusId(busId, &nvmlDev) != ncclSuccess) nvmlDev = NULL;
NCCLCHECK(ncclTopoGetXmlFromGpu(node, nvmlDev, xml, gpuNode));
return ncclSuccess;
}
然后通过wrapNvmlSymbols加载动态库libnvidia-ml.so.1,用来获取gpu的相关信息。
ncclResult_t ncclTopoGetXmlFromGpu(struct ncclXmlNode* pciNode, nvmlDevice_t nvmlDev, struct ncclXml* xml, struct ncclXmlNode** gpuNodeRet) {
struct ncclXmlNode* gpuNode = NULL;
NCCLCHECK(xmlGetSub(pciNode, "gpu", &gpuNode));
if (gpuNode == NULL) NCCLCHECK(xmlAddNode(xml, pciNode, "gpu", &gpuNode));
int index = -1;
int dev = -1;
NCCLCHECK(xmlGetAttrIndex(gpuNode, "dev", &index));
if (index == -1) {
if (nvmlDev == NULL) {
WARN("No NVML, trying to use CUDA instead");
const char* busId;
NCCLCHECK(xmlGetAttr(pciNode, "busid", &busId));
if (busId == NULL || cudaDeviceGetByPCIBusId(&dev, busId) != cudaSuccess) dev = -1;
} else {
NCCLCHECK(wrapNvmlDeviceGetIndex(nvmlDev, (unsigned int*)&dev));
}
NCCLCHECK(xmlSetAttrInt(gpuNode, "dev", dev));
}
NCCLCHECK(xmlGetAttrInt(gpuNode, "dev", &dev));
if (dev == -1) { *gpuNodeRet = NULL; return ncclSuccess; }
NCCLCHECK(xmlGetAttrIndex(gpuNode, "sm", &index));
if (index == -1) {
int cudaMajor, cudaMinor;
if (nvmlDev == NULL) {
cudaDeviceProp devProp;
CUDACHECK(cudaGetDeviceProperties(&devProp, dev));
cudaMajor = devProp.major; cudaMinor = devProp.minor;
} else {
NCCLCHECK(wrapNvmlDeviceGetCudaComputeCapability(nvmlDev, &cudaMajor, &cudaMinor));
}
NCCLCHECK(xmlSetAttrInt(gpuNode, "sm", cudaMajor*10+cudaMinor));
}
int sm;
NCCLCHECK(xmlGetAttrInt(gpuNode, "sm", &sm));
struct ncclXmlNode* nvlNode = NULL;
NCCLCHECK(xmlGetSub(pciNode, "nvlink", &nvlNode));
if (nvlNode == NULL) {
// NVML NVLink detection
int maxNvLinks = (sm < 60) ? 0 : (sm < 70) ? 4 : (sm < 80) ? 6 : 12;
if (maxNvLinks > 0 && nvmlDev == NULL) {
WARN("No NVML device handle. Skipping nvlink detection.\n");
maxNvLinks = 0;
}
for (int l=0; l<maxNvLinks; ++l) {
// Check whether we can use this NVLink for P2P
unsigned canP2P;
if ((wrapNvmlDeviceGetNvLinkCapability(nvmlDev, l, NVML_NVLINK_CAP_P2P_SUPPORTED, &canP2P) != ncclSuccess) || !canP2P) continue;
// Make sure the Nvlink is up. The previous call should have trained the link.
nvmlEnableState_t isActive;
if ((wrapNvmlDeviceGetNvLinkState(nvmlDev, l, &isActive) != ncclSuccess) || (isActive != NVML_FEATURE_ENABLED)) continue;
// Try to figure out what's on the other side of the NVLink
nvmlPciInfo_t remoteProc;
if (wrapNvmlDeviceGetNvLinkRemotePciInfo(nvmlDev, l, &remoteProc) != ncclSuccess) continue;
// Make a lower case copy of the bus ID for calling ncclDeviceType
// PCI system path is in lower case
char* p = remoteProc.busId;
char lowerId[NVML_DEVICE_PCI_BUS_ID_BUFFER_SIZE];
for (int c=0; c<NVML_DEVICE_PCI_BUS_ID_BUFFER_SIZE; c++) {
lowerId[c] = tolower(p[c]);
if (p[c] == 0) break;
}
NCCLCHECK(xmlGetSubKv(gpuNode, "nvlink", &nvlNode, "target", lowerId));
if (nvlNode == NULL) {
NCCLCHECK(xmlAddNode(xml, gpuNode, "nvlink", &nvlNode));
NCCLCHECK(xmlSetAttr(nvlNode, "target", lowerId));
NCCLCHECK(xmlSetAttrInt(nvlNode, "count", 1));
} else {
int count;
NCCLCHECK(xmlGetAttrInt(nvlNode, "count", &count));
NCCLCHECK(xmlSetAttrInt(nvlNode, "count", count+1));
}
}
}
// Fill target classes
for (int s=0; s<gpuNode->nSubs; s++) {
struct ncclXmlNode* sub = gpuNode->subs[s];
if (strcmp(sub->name, "nvlink") != 0) continue;
int index;
NCCLCHECK(xmlGetAttrIndex(sub, "tclass", &index));
if (index == -1) {
const char* busId;
NCCLCHECK(xmlGetAttr(sub, "target", &busId));
if (strcmp(busId, "fffffff:ffff:ff") == 0) {
// Remote NVLink device is not visible inside this VM. Assume NVSwitch.
NCCLCHECK(xmlSetAttr(sub, "tclass", "0x068000"));
} else {
char* path;
NCCLCHECK(getPciPath(busId, &path));
NCCLCHECK(ncclTopoSetAttrFromSys(sub, path, "class", "tclass"));
}
}
}
*gpuNodeRet = gpuNode;
return ncclSuccess;
}
首先在xml gpu节点"pci"下创建节点"gpu",然后设置"gpu"节点的属性,比如dev,计算能力sm,然后开始查询nvlink相关信息,遍历所有可能的nvlink,通过nvmlDeviceGetNvLinkCapability查询nvlink信息。
如果这个nvlink被启用,那么在"gpu"节点下新建一个"nvlink"节点,设置"target"属性表示nvlink对端的PCIe busId,将"target"相同的"nvlink"节点表示为一个,用"count"表示起止点之间有多少条nvlink,然后设置属性"tclass"表示"target"是什么类型的PCI设备。
到这里ncclTopoFillGpu就执行结束了,此时xml如下所示,图里只展示了一张网卡的情况,其中"gpu"和他的父节点其实都是指的同一个gpu。
然后回到ncclTopoGetSystem,会设置"gpu"的rank和gdr属性。
然后是对于所有的网卡,类似上述gpu的过程,通过ncclTopoGetXmlFromSys建立xml树,如下所示,只展示一张网卡的情况,其中"net","nic"和"nic"的父节点都表示同一张网卡。
<system version="1">
<cpu numaid="0" affinity="00000000,0000000f,ffff0000,00000000,000fffff" arch="x86_64" vendor="GenuineIntel" familyid="6" modelid="85">
<pci busid="0000:11:00.0" class="0x060400" link_speed="8 GT/s" link_width="16">
<pci busid="0000:13:00.0" class="0x060400" link_speed="8 GT/s" link_width="16">
<pci busid="0000:15:00.0" class="0x060400" link_speed="8 GT/s" link_width="16">
<pci busid="0000:17:00.0" class="0x030200" link_speed="16 GT/s" link_width="16">
<gpu dev="0" sm="80" rank="0" gdr="1">
<nvlink target="0000:e7:00.0" count="2" tclass="0x068000"/>
<nvlink target="0000:e4:00.0" count="2" tclass="0x068000"/>
<nvlink target="0000:e6:00.0" count="2" tclass="0x068000"/>
<nvlink target="0000:e9:00.0" count="2" tclass="0x068000"/>
<nvlink target="0000:e5:00.0" count="2" tclass="0x068000"/>
<nvlink target="0000:e8:00.0" count="2" tclass="0x068000"/>
</gpu>
</pci>
</pci>
</pci>
<pci busid="0000:1c:00.0" class="0x020000" link_speed="8 GT/s" link_width="16">
<nic>
<net name="mlx5_0" dev="0" speed="100000" port="1" guid="0x82d0c0003f6ceb8" maxconn="262144" gdr="1"/>
</nic>
</pci>
</pci>
</cpu>
</system>
总结一下,本节主要介绍了NCCL拓扑分析的过程,通过sysfs将gpu和网卡对应的pci树结构建立出来了xml树。
(原文:
https://blog.csdn.net/KIDGIN7439/article/details/126990961)
欢迎 Star、试用 OneFlow 最新版本:https://github.com/Oneflow-Inc/oneflow/
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。