欢迎访问我的GitHub
这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos
本篇概览
- 本文是《JavaCV的摄像头实战》的第八篇,前面的操作夯实了的帧和流处理的基本功,接下来开始实现一些常见的CV能力,就从本篇的人检测别开始吧
OpenCV中常用的人脸检测是基于Haar特征的级联分类器,本篇借助JavaCV来使用该分类器实现人脸检测
简单的设计
- 编码之前先把要做的事情梳理一下:
- 检测功能可能用在多个场景:窗口预览、推流、存文件都可能用到,所以检测功能的代码最好独立出来,不要和预览、推流这些代码写在一起,如下图,检测的接口DetectService会作为每个应用的成员变量存在:
- 检测服务不仅是人脸检测,今后还有人体检测、物体检测等等,所以设计一个检测服务接口DetectService,人脸检测、人体检测、物体检测这些类都是这个接口的实现,如下图所示,对于预览、推流、存文件这个应用的代码,直接使用接口的API即可,具体检测的实现类可以在初始化的时候确定
- 聪明的您应该会觉得欣宸的水平过于原始:上面的设计不就是Spring的依赖注入吗?为啥不用呢?其实这个系列的重点是JavaCV,所以保持代码简单吧,不引入Spring框架了
- 总的来说,今天的要写的代码如下图所示,绿色块的AbstractCameraApplication类已在《JavaCV的摄像头实战之一:基础》一文中完成,其余三个全部在本篇编写,包括两个java类、一个接口:
分析得差不多了,开始编码,先写接口DetectService
检测服务接口DetectService
新增接口DetectService.java,里面有三个方法定义:
/** * 初始化操作,例如模型下载 * @throws Exception */ void init() throws Exception; /** * 得到原始帧,做检测,添加框选 * @param frame * @return */ Frame convert(Frame frame); /** * 释放资源 */ void releaseOutputResource();
另外还有两个静态方法,也放在DetectService.java中,第一个是buildGrayImage,该方法会根据入参Mat的尺寸新建一个Mat对象,新建的对象用于保存灰度图片,因为检测时用的是灰度图片而不是原图:
/** * 根据传入的MAT构造相同尺寸的MAT,存放灰度图片用于以后的检测 * @param src 原始图片的MAT对象 * @return 相同尺寸的灰度图片的MAT对象 */ static Mat buildGrayImage(Mat src) { return new Mat(src.rows(), src.cols(), CV_8UC1); }
第二个方法是第一个是detect,该方法非常重要:将原图转为灰度图片,再用指定的分类器检测,将检测结果在原图上标注出来,标注后的Mat转为Frame对象返回:
/** * 检测图片,将检测结果用矩形标注在原始图片上 * @param classifier 分类器 * @param converter Frame和mat的转换器 * @param rawFrame 原始视频帧 * @param grabbedImage 原始视频帧对应的mat * @param grayImage 存放灰度图片的mat * @return 标注了检测结果的视频帧 */ static Frame detect(CascadeClassifier classifier, OpenCVFrameConverter.ToMat converter, Frame rawFrame, Mat grabbedImage, Mat grayImage) { // 当前图片转为灰度图片 cvtColor(grabbedImage, grayImage, CV_BGR2GRAY); // 存放检测结果的容器 RectVector objects = new RectVector(); // 开始检测 classifier.detectMultiScale(grayImage, objects); // 检测结果总数 long total = objects.size(); // 如果没有检测到结果,就用原始帧返回 if (total<1) { return rawFrame; } // 如果有检测结果,就根据结果的数据构造矩形框,画在原图上 for (long i = 0; i < total; i++) { Rect r = objects.get(i); int x = r.x(), y = r.y(), w = r.width(), h = r.height(); rectangle(grabbedImage, new Point(x, y), new Point(x + w, y + h), Scalar.RED, 1, CV_AA, 0); } // 释放检测结果资源 objects.close(); // 将标注过的图片转为帧,返回 return converter.convert(grabbedImage); }
- 以上就是接口DetectService.java的全部:三个方法定义,两个静态方法,接下来就是接口的实现类了
人脸检测功能的实现类
- 前面的DetectService接口仅定义了三个方法:初始化(init)、检测(convert)、资源释放(releaseOutputResource),现在开发这个接口的实现类HaarCascadeDetectService.java,实现真正的人脸检测功能
完整代码如下,核心是init方法中实例化的分类器classifier,以及负责处理每一帧的convert方法,这里面会中调用刚才写的静态方法DetectService.detect,把原始帧转换成标注了检测结果的帧:
package com.bolingcavalry.grabpush.extend; import lombok.extern.slf4j.Slf4j; import org.bytedeco.javacpp.Loader; import org.bytedeco.javacv.Frame; import org.bytedeco.javacv.OpenCVFrameConverter; import org.bytedeco.opencv.opencv_core.Mat; import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier; import java.io.File; import java.net.URL; /** * @author willzhao * @version 1.0 * @description Haar检测的实现类 * @date 2021/12/3 8:09 */ @Slf4j public class HaarCascadeDetectService implements DetectService { /** * 每一帧原始图片的对象 */ private Mat grabbedImage = null; /** * 原始图片对应的灰度图片对象 */ private Mat grayImage = null; /** * 分类器 */ private CascadeClassifier classifier; /** * 转换器 */ private OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat(); /** * 模型文件的下载地址 */ private String modelFileUrl; /** * 构造方法,在此指定模型文件的下载地址 * @param modelFileUrl */ public HaarCascadeDetectService(String modelFileUrl) { this.modelFileUrl = modelFileUrl; } /** * 音频采样对象的初始化 * @throws Exception */ @Override public void init() throws Exception { // 下载模型文件 URL url = new URL(modelFileUrl); File file = Loader.cacheResource(url); // 模型文件下载后的完整地址 String classifierName = file.getAbsolutePath(); // 根据模型文件实例化分类器 classifier = new CascadeClassifier(classifierName); if (classifier == null) { log.error("Error loading classifier file [{}]", classifierName); System.exit(1); } } @Override public Frame convert(Frame frame) { // 由帧转为Mat grabbedImage = converter.convert(frame); // 灰度Mat,用于检测 if (null==grayImage) { grayImage = DetectService.buildGrayImage(grabbedImage); } // 进行人脸检测,根据结果做处理得到预览窗口显示的帧 return DetectService.detect(classifier, converter, frame, grabbedImage, grayImage); } /** * 程序结束前,释放人脸检测的资源 */ @Override public void releaseOutputResource() { if (null!=grabbedImage) { grabbedImage.release(); } if (null!=grayImage) { grayImage.release(); } if (null==classifier) { classifier.close(); } } }
主程序PreviewCameraWithDetect
- 在《JavaCV的摄像头实战之一:基础》一文创建的simple-grab-push工程中已经准备好了父类AbstractCameraApplication,所以本篇继续使用该工程,创建子类实现那些抽象方法即可
- 编码前先回顾父类的基础结构,如下图,粗体是父类定义的各个方法,红色块都是需要子类来实现抽象方法,所以接下来,咱们以本地窗口预览为目标实现这三个红色方法即可:
- 新建文件PreviewCameraWithDetect.java,这是AbstractCameraApplication的子类,其代码很简单,接下来按上图顺序依次说明
先定义CanvasFrame类型的成员变量previewCanvas,这是展示视频帧的本地窗口:
protected CanvasFrame previewCanvas
还要定义DetectService类型的成员变量,用于稍后的检测操作,并在构造方法中对改成员变量赋值:
/** * 检测工具接口 */ private DetectService detectService; /** * 不同的检测工具,可以通过构造方法传入 * @param detectService */ public PreviewCameraWithDetect(DetectService detectService) { this.detectService = detectService; }
然后是初始化操作,除了previewCanvas的实例化和参数设置,还要调用检测服务的初始化方法:
@Override protected void initOutput() throws Exception { previewCanvas = new CanvasFrame("摄像头预览", CanvasFrame.getDefaultGamma() / grabber.getGamma()); previewCanvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); previewCanvas.setAlwaysOnTop(true); // 检测服务的初始化操作 detectService.init(); }
接下来是output方法,定义了拿到每一帧视频数据后做什么事情,这里会交给检测服务去处理,将处理结果在本地窗口显示:
@Override protected void output(Frame frame) { // 原始帧先交给检测服务处理,这个处理包括物体检测,再将检测结果标注在原始图片上, // 然后转换为帧返回 Frame detectedFrame = detectService.convert(frame); // 预览窗口上显示的帧是标注了检测结果的帧 previewCanvas.showImage(detectedFrame); }
由于检测服务也会耗时,所以这里调整每帧输出后的等待时间,以免预览时卡顿,请依照自己电脑CPU性能调整,我这里改为原有时长的八分之一:
@Override protected int getInterval() { return super.getInterval()/8; }
最后是处理视频的循环结束后,程序退出前要做的事情,即关闭本地窗口,另外还要调用检测服务的releaseOutputResource来释放其相关资源:
@Override protected void releaseOutputResource() { if (null!= previewCanvas) { previewCanvas.dispose(); } // 检测工具也要释放资源 detectService.releaseOutputResource(); }
至此,用本地窗口预览摄像头的功能已开发完成,再写上main方法,注意参数100表示预览持续时间是100秒,modelFileUrl是模型文件在GitHub上的地址(注释掉的那个是人体的,您也可以试试):
public static void main(String[] args) { String modelPath = "https://raw.github.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_alt.xml"; // String modelPath = "https://raw.github.com/opencv/opencv/master/data/haarcascades/haarcascade_upperbody.xml"; new PreviewCameraWithDetect(new HaarCascadeDetectService(modelPath)).action(1000); }
- 运行main方法即可启动程序,如下图,预览窗口中如果有人像,人脸上就会出现红框(为了不侵犯群众演员的肖像权,手动对面部做了马赛克处理):
- 至此,本地窗口预览集成人脸检测的功能就完成了,得益于JavaCV的强大,整个过程是如此的轻松愉快,接下来请继续关注欣宸原创,《JavaCV的摄像头实战》系列还会呈现更多丰富的应用;
本文涉及的所有代码都能在接下来的介绍的GitHub仓库中找到
源码下载
- 《JavaCV的摄像头实战》的完整源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):
名称 | 链接 | 备注 |
---|---|---|
项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
- 这个git项目中有多个文件夹,本篇的源码在javacv-tutorials文件夹下,如下图红框所示:
javacv-tutorials里面有多个子工程,《JavaCV的摄像头实战》系列的代码在simple-grab-push工程下:
欢迎关注思否:程序员欣宸
学习路上,你不孤单,欣宸原创一路相伴...
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。