一、背景介绍

CDP系统中目前存在大量由用户ID集合组成的标签和群体,截止当前已有几千+标签,群体2W+。

大量的标签都是亿级别数据量以上,例如性别、职业、学历等均,甚至有群体中的ID数量达到了数十亿+。

并且随着用户ID池的不断增加,标签和群体本身包含的ID数量也随之增加,如何存储如此多的数据,标签与群体之间的组合计算,是我们面临的挑战。

二、问题描述

如此大量的用户ID集合,虽然标签和群体的ID集合本质类似,但是都需要存储亿级别的ID数据,这就对存储结构提出较高的要求。

这里拿群体举例,如果某群体包含1000W个用户ID,通过文本文件存储,大概需要150M,40亿的群体就达到了惊人的150*40*10=60000M,大约60G,而我们的群体数量已经达到了几W+,再加上标签数据,所需要的存储空间将不可接受。

并且,数据的存储只是其中一个方面,后续针对标签和群体的组合计算,创建出更细粒度的ID包也是一个挑战。

三、解决方案

面对以上问题,CDP采用了Bitmap的思路来解决,不但解决了存储空间问题,而且Bitmap本身的交并差运算,能够很好的支持用户对不同标签和群体的组合计算,详细方案如下。

1)Bitmap简介

为了便于理解,首先介绍一下什么是bitmap。

它的基本思想是用bit位来唯一标记某个数值,这样可以用它来记录一个数值没有重复的数据元组。并且每一条数据只使用一个bit来标识,能够大大的节省存储空间。

比如,我想存储一个数值数组[2,4,6,8]。

Java中如果用byte类型来存储,不考虑其他开销,需要4个字节的空间,一个字节8位,也就是4*8=32bit。

倘若使用更大的数据类型,存储空间也会相应增大,如使用Integer(4字节),则需要4*4*8=128bit。

而如果采用bitmap的思想,只需要构建一个8bit空间,也就是一个字节的空间来存储,如下图。

2)用户ID池编码

通过上文的例子,可以看到,使用Bitmap思想来存储,实际上每一个数据是一个bit,而且不能重复,这一点用户ID是符合的,没有重复的用户ID。

由于bitmap里只能存0或者1来标识当前位是否有值,而用户ID确是一个字符串,这就需要将数十亿的用户ID进行唯一性编码,这个编码也就是我们常说的offset偏移量。

每一个用户ID对应一个唯一的offset,目前已到数十亿,也就是说当前最大的偏移量是数十亿+,这部分由数据同学帮我们加工一张ID池表,其中包含了ID和offset的对应关系。这样,新注册的id,只要顺序增加offset值即可。

下边是一个简单示意图,假设我有8个id,id1~id8,对应的offset编号为1~8。

我要建一个只包含双数id的标签或群体,则我只需要将offset为2,4,6,8的位设为1即可。

3)遇到问题

有了存储的数据结构,还有id池,接下来就是具体实现了。

提到Bitmap,首先想到的是Java中的一种实现方案BitSet,不过它存在两个问题。

一是我们的id池已经到达几十亿+,已经超出了BitSet所能处理的范围,当前超出了2^32=4294967296

另一个问题是,倘若我建一个包含两个id的群体,第一个offset是1,第二个offset是10000000,这种情况还是要创建一个1000wbit的空间来存储,并且只有两个bit位是1,其他的全为0,这显然造成了很大的空间浪费。

也就是说,数据越稀疏,空间浪费越严重

下方位BitSet扩容时的代码,由代码中也可以看到,默认扩容2倍,当需要的大小超过2倍时,则按照需要扩容。

    public void set(int bitIndex) {
        if (bitIndex < 0)
            throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);

        int wordIndex = wordIndex(bitIndex);
        expandTo(wordIndex);

        words[wordIndex] |= (1L << bitIndex); // Restores invariants

        checkInvariants();
    }

    private void expandTo(int wordIndex) {
        int wordsRequired = wordIndex+1;
        if (wordsInUse < wordsRequired) {
            ensureCapacity(wordsRequired);
            wordsInUse = wordsRequired;
        }
    }

    private void ensureCapacity(int wordsRequired) {
        if (words.length < wordsRequired) {
            // Allocate larger of doubled size or required size
            int request = Math.max(2 * words.length, wordsRequired);
            words = Arrays.copyOf(words, request);
            sizeIsSticky = false;
        }
    }


当用户圈的群体特别稀疏时,有可能会造成很大的空间浪费,所以,我们需要使用一种能够压缩的高效的位图实现。

4)RoaringBitmap压缩

我们最终使用的是RoaringBitmap,一种高效的压缩位图实现,简称RBM。于2016年由S. Chambi、D. Lemire、O. Kaser等人在论文《Better bitmap performance with Roaring bitmaps》 《Consistently faster and smaller compressed bitmaps with Roaring》中提出。

基本实现思路如下:

以整型int(32位)为例,将数据分成高16位和低16位两部分,低16位不变,作为数据位Container,高16位作为桶的编号Container,可以理解为高位的Container中,存放了很多个低位Container。

高低位计算示例:

protected static char highbits(int x) {
  return (char) (x >>> 16);
}

protected static char lowbits(int x) {
  return (char) x;
}

比如,我要存放65538这个值,则高位为65538>>>16=1,低位为65538-65536*1=2,即存储在1号桶的2号位置,存储位置如下图:

我们当前使用的RoaringBitmap版本为0.8.13,Container包含了三种实现:ArrayContainer(数组容器),BitmapContainer(位图容器),RunContainer(行程步长容器)

不过,上文中提到当前id池已经超过了整型所能标识的最大范围(2^32=4294967296),所以需要一个能够处理64位的实现,我们使用了RoaringBitmap包中支持64位的Roaring64NavigableMap。

它的实现思路和32位的基本一致,分成了高32位和低32位两部分

jar包引入方式:

<dependency>
     <groupId>org.roaringbitmap</groupId>
     <artifactId>RoaringBitmap</artifactId>
     <version>0.8.13</version>
</dependency>

public void add(long... dat) {
    for (long oneLong : dat) {
      addLong(oneLong);
    }
 }

public void addLong(long x) {
  int high = high(x);
  int low = low(x);
  …………
}

public static int high(long id) {
  return (int) (id >> 32);
}

public static int low(long id) {
  return (int) id;
}

bitmap位图操作方法:

四、现状及展望

目前,CDP画像的标签和群体均采用了RoaringBitmap的存储方式。人群和标签的交并差计算,生成更加精细化的人群就可以通过bitmap的操作来实现。

有了良好的存储方式,下一步就是如何将存储在数据仓库的明细数据,加工成原始的标签或者群体,具体实现方案会在下一篇分享。

作者:京东科技 黎宇飞

来源:京东云开发者社区 转载请注明来源


京东云开发者
3.4k 声望5.4k 粉丝

京东云开发者(Developer of JD Technology)是京东云旗下为AI、云计算、IoT等相关领域开发者提供技术分享交流的平台。