目前LangChain框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解LangChain大模型框架并开发,产出此文章。本文章包含了LangChain的简介、基本组件和可跑的代码案例(包含Embedding、Completion、Chat三种功能模型声明)。读完此文章,您可利用集团申请的api key+LangChain框架进行快速开发,体验大语言模型的魅力。一、简介LangChain 作为一个大语言模型(LLM)集成框架,旨在简化使用大语言模型的开发过程,包括如下组件:
LangChain框架优点:1.多模型支持:LangChain 支持多种流行的预训练语言模型,如 OpenAI GPT-3、Hugging Face Transformers 等,为用户提供了广泛的选择。2.易于集成:LangChain 提供了简单直观的API,可以轻松集成到现有的项目和工作流中,无需深入了解底层模型细节。3.强大的工具和组件:LangChain 内置了多种工具和组件,如文档加载器、文本转换器、提示词模板等,帮助开发者处理复杂的语言任务。4.可扩展性:LangChain 允许开发者通过自定义工具和组件来扩展框架的功能,以适应特定的应用需求。5.性能优化:LangChain 考虑了性能优化,支持高效地处理大量数据和请求,适合构建高性能的语言处理应用。6.Python 和 Node.js 支持:开发者可以使用这两种流行的编程语言来构建和部署LangChain应用程序。由于支持 Node.js ,前端大佬们可使用Javascript语言编程从而快速利用大模型能力,无需了解底层大模型细节。同时也支持JAVA开发,后端大佬同样适用。本篇文章案例聚焦Python语言开发。二、基本组件
•Prompt【可选】◦告知LLM内system服从什么角色◦占位符:设置{input}以便动态填补后续用户输入•Retriever【可选】◦LangChain一大常见应用场景就是RAG(Retrieval-Augmented Generation),RAG 为了解决LLM中语料的通用和时间问题,通过增加最新的或者垂类场景下的外部语料,Embedding化后存入向量数据库,然后模型从外部语料中寻找相似语料辅助回复•Models◦可做 Embedding化,语句补全,对话等支持的模型选择,OpenAI为例
•Parser【可选】◦StringParser,JsonParser 等◦将模型输出的AIMessage转化为string, json等易读格式上述介绍了Langchain开发中常见的components,接下来将通过一简单案例将上述组件串起来,让大家更熟悉Langchain中的组件及接口调用。三、小试牛刀import os
gpt 网关调用
os.environ["OPENAI_API_KEY"] = "{申请的集团api key}"
os.environ["OPENAI_API_BASE"] = "{您的url}"
import openai
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY']
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
prompt = ChatPromptTemplate.from_template(
"tell me a short joke about {topic}"
)
model = ChatOpenAI()
output_parser = StrOutputParser()
chain = prompt | model | output_parser
chain.invoke({"topic": "bears"})输出:"Why don't bears wear shoes?\nBecause they have bear feet!"其中 chain = prompt | model | output_parser 按照数据传输顺序将上述声明的 prompt template、大语言模型、输出格式串联起来(Chain),逻辑清晰直接。代码案例:调用Embedding、Completion、Chat Model •将文本转化为Embedding : langchain_community.embeddings <-> OpenAIEmbeddingsfrom langchain_community.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
model="text-embedding-ada-002",
openai_api_key=os.environ["OPENAI_API_KEY"],
openai_api_base=os.environ["OPENAI_API_BASE"]
)
text = "text"
query_result = embeddings.embed_query(text)
•文本补全:langchain_community.llms <-> OpenAI completionfrom langchain_community.llms import OpenAI
llm = OpenAI(
model_name='gpt-35-turbo-instruct-0914',
openai_api_key=os.environ["OPENAI_API_KEY"],
base_url=base_url,
temperature=0
)
llm.invoke("I have an order with order number 2022ABCDE, but I haven't received it yet. Could you please help me check it?")
•对话模型:langchain_openai <-> ChatOpenAIfrom langchain_openai import ChatOpenAI
model = ChatOpenAI(model_name="gpt-35-turbo-1106") # "glm-4"
model.invoke("你好,你是智谱吗?")四、总结LangChain作为一个使用流程直观的大模型开发框架,掌握它优势多多。希望您可以通过上述内容入门并熟悉LangChain框架,欢迎多多交流!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。