作者:来自 vivo 互联网存储研发团队-Guo Xiang

本文介绍了TiDB中最基本的PointGet算子在存储层TiKV中的执行流程。

一、背景介绍

TiDB是一款具有HTAP能力(同时支持在线事务处理与在线分析处理 )的融合型分布式数据库产品,具备水平扩容或者缩容等重要特性。TiDB 采用多副本+Multi-Raft 算法的方式将数据调度到不同的机器节点上,具备较高的可靠性和容灾能力。TiDB中的存储层TiKV组件,能够独立于TiDB作为一款分布式KV数据库使用,目前已经捐赠给CNCF并于2020年正式毕业。目前vivo公司内部的磁盘KV产品采用了开源的TiKV作为存储层实现, 目前已经在公司的不同业务产品中有深度实践。

TiKV作为一款KV数据库产品,同时提供了RawAPI和TxnAPI两套接口:

  • RawAPI仅支持最基本的针对单Key操作的Set/Get/Del及Scan语义
  • TxnAPI提供了基于ACID事务标准的接口,支持多Key写入的原子性

TxnAPI采用了分布式事务来保证多Key写入的原子性,其适用的业务场景与RawAPI相比来说更为广泛。本文后续内容将重点对PointGet在TiKV侧的执行流程进行分析,其内容涉及到storage和txn模块。阅读本文后,读者将会深入了解TiKV源码中Get流程的实现细节,包括如何处理读请求、如何进行数据定位和读取、如何实现事务隔离级别等方面,并且能够更好地理解TiKV的内部工作原理和性能优化。

二、PointGet介绍

2.1 TiDB视角中的PointGet

PointGet顾名思义即"点查", 它是TiDB中最为基本的几种算子之一,以下列举了两个常见的PointGet算子的使用场景:

  • 根据主键Id查询
MySQL [test]> explain select * from user where id = 1024;
+-------------+---------+------+-------------------------------+---------------+
| id          | estRows | task | access object                 | operator info |
+-------------+---------+------+-------------------------------+---------------+
| Point_Get_1 | 1.00    | root | table:user, index:PRIMARY(id) |               |
+-------------+---------+------+-------------------------------+---------------+
  • 根据唯一索引查询
MySQL [test]> explain select * from users where name = "test";
+-------------+---------+------+-------------------------------+---------------+
| id          | estRows | task | access object                 | operator info |
+-------------+---------+------+-------------------------------+---------------+
| Point_Get_1 | 1.00    | root | table:users, index:name(name) |               |
+-------------+---------+------+-------------------------------+---------------+

2.2 纯KV用户视角中的PointGet

部分业务没有完整地使用TiDB组件,而是使用官方提供的client-go/client-rust直接访问PD和TiKV。

func testGet(k []byte) (error) {
    txn, err := client.Begin()
    if err != nil {
        return err
    }
    v, err := txn.Get(context.TODO(), k)
    if err != nil {
        return err
    }
    fmt.Printf("value of key is: %+v", v)
    return nil
}

三、PointGet在TiDB中的实现

TiDB层为计算层,其主要职能为MySQL协议的实现以及SQL优化器和执行器的构建。客户端发起的所有SQL, 都会经过以下生命周期流程:

  1. Lexer/Parser解析后得到AST,并转换为执行计划。
  2. 执行计划经过RBO/CBO后得到优化过后的执行计划。
  3. 基于执行计划构建执行器,其本质是不同的算子"套娃",整体构成一个树型结构。

TiDB的执行器基于"火山模型"构建,不同的操作算子具有不同的Executor实现:

type Executor interface {   
    base() *baseExecutor
    Open(context.Context) error
    Next(ctx context.Context, req *chunk.Chunk) error
    Close() error
    Schema() *expression.Schema
}

Executor中最为核心的是三个函数分别是Open/Next/Close,分别对应算子的初始化、迭代以及收尾逻辑。本文涉及的PointGet算子由PointGetExector实现,其核心的查询逻辑位于PointGetExector::Next()函数中。由于相关逻辑耦合了悲观事务,以及tikv/client-go中部分Percolator的实现,且不属于本文重点分析的主要内容,这里不展开描述,感兴趣的读者可以自行阅读。

四、PointGet在TiKV中的实现

4.1 PointGet接口定义

TiKV和TiDB使用gRPC进行通信,其接口契约定义采用了protobuf,我们可以在pingcap/kvproto项目中找到与PointGet相关的接口定义KvGet如下:

// Key/value store API for TiKV.
service Tikv {
    // Commands using a transactional interface.
    rpc KvGet(kvrpcpb.GetRequest) returns (kvrpcpb.GetResponse) {}
    // ... other api definations ...
}

其中入参GetRequest定义如下代码片段,我们可以看到,TiKV的点查接口除了key之外,还额外需要一个名为version的参数,即当前事务的start_ts(事务开始时间戳),这个时间戳是由TiDB在启动事务时从Pd组件申请而来。与很多数据库类似,TiKV也采用了MVCC机制,即同一个key在底层的存储中在不同时刻拥有不同的值,因此要想进行查询,除了key之外,还需要带上版本。

// A transactional get command. Lookup a value for `key` in the transaction with
// starting timestamp = `version`.
message GetRequest {
    Context context = 1;
    bytes key = 2;
    uint64 version = 3;
}

4.2 TiKV侧调用堆栈

TiKV作为gRPC的Server端,提供了KvGet接口的实现,相关调用堆栈为:

+TiKV::kv_get (grpc-poll-thread)
 +future_get
  +Storage::get
   +Storage::snapshot (readpool-thread)
   +SnapshotStore::get
     +PointGetterBuilder::build
     +PointGetter::get

在一次KvGet调用中,函数执行流程会在grpc-poll-thread和readpool-thread中切换,其中前者为gRPC的poll thread,请求在被路由到Storage层后,会根据读写属性路由到不同的线程池中,只读语义的Get/Scan请求都会被路由到ReadPool中执行,这是一个特定用于处理只读请求的线程池。

4.3 Read through locks介绍

在分析后续逻辑之前,我们需要对Read through locks机制先做个简单介绍。TiKV使用Percoaltor模型来实现分布式事务,同时也引入了MVCC机制。然而其实现和传统的MVCC实现略有差异:TiKV的读取过程中若遇到其他事务提交时写入的Lock, 则需要等待或者尝试解锁,这会阻塞读取直到事务状态确定,一定程度上会损失并发性能。

然而在一些场景(如SecondaryLocks),在Key对应的锁仍然存在的情况下,我们已经知道相关事务的最终状态(提交或回滚)。如果我们将这些事务的最终状态与查询请求一起发送给TiKV, 那么TiKV可以根据这些事务状态来确定能否在有Lock的情况下安全读取,避免不必要的等待, 即本小节提到的Read through lock机制。

Context是所有的TiKV请求都会携带的上下文信息,为了实现Read through lock, https://github.com/pingcap/kvproto/pull/833 这个PR在Context中添加了如下字段:

message Context {
    // Read requests can ignore locks belonging to these transactions because either
    // these transactions are rolled back or theirs commit_ts > read request's start_ts.
    repeated uint64 resolved_locks = 13;
  
    // Read request should read through locks belonging to these transactions because these
    // transactions are committed and theirs commit_ts <= read request's start_ts.
    repeated uint64 committed_locks = 22;
}

其中resolved_locks用于记录读取时可以忽略的锁,这些锁对应的事务可能已被回滚,或者已成功提交但CommitTS大于当前的读StartTS,直接忽略这些锁也不影响快照一致性。

其中committed_locks则用于记录逻辑上已被正确提交但物理上Lock还未被清理的、且CommitTS小于当前读取使用的StartTS的事务。由于事务本质上已经被提交,因此读取时可以不需要返回等待,只需要通过Lock查询DefaultCF中的数据即可。

通过Read through lock机制,TiKV可以在一些Lock尚未被清理的情况下直接返回正确的结果,避免了客户端层面的Wait和ResolveLock,其具体实现在后续小节会涉及到。

4.4 Storage::get流程分析

下方代码块是经过精简过后的伪代码,主要标注了get流程中一些比较关键的步骤。

pub fn get(&self, mut ctx: Context, key: Key, start_ts: TimeStamp) -> impl Future<Output = ... >> {
  self.read_pool.spawn_handle(async move {
    
     // 1. 创建创建快照需要的上下文
     let snap_ctx = prepare_snap_ctx(...);
  
     // 2. 申请一个快照
     let snapshot = Self::with_tls_engine(|engine| Self::snapshot(engine, snap_ctx)).await?;
       
     // 3. 创建SnapshotStore对象并执行查询
     let snap_store = SnapshotStore::new(...);
     let result = snap_store.get(key);
  
     // 4. 更新Metrics和Stats统计信息
  });
}

4.4.1 准备快照上下文

prepare\_snap\_ctx顾名思义即准备用于创建快照所需要的上下文对象,即SnapContext对象,其完整定义如下:

pub struct SnapContext<'a> {
    pub pb_ctx: &'a Context,
    pub read_id: Option<ThreadReadId>,
    // When start_ts is None and `stale_read` is true, it means acquire a snapshot without any
    // consistency guarantee.
    pub start_ts: Option<TimeStamp>,
    // `key_ranges` is used in replica read. It will send to
    // the leader via raft "read index" to check memory locks.
    pub key_ranges: Vec<KeyRange>,
    // Marks that this snapshot request is allowed in the flashback state.
    pub allowed_in_flashback: bool,
}
 
fn prepare_snap_ctx<'a>(...) -> Result<SnapContext<'a>> {
    if !pb_ctx.get_stale_read() {
        concurrency_manager.update_max_ts(start_ts);
    }
    if need_check_locks(isolation_level) {
       concurrency_manager.read_key_check(...)
    }
    let mut snap_ctx = SnapContext {...};
    if need_check_locks_in_replica_read(pb_ctx) {
       snap_ctx.key_ranges = ...
    }
}

prepare\_snap\_ctx只需要创建一个SnapContext对象,但目前实现中多出了如下判断或操作,绝大部分都源于TiKV5.0中的AsyncCommit特性所需。

1.当本次读取非StaleRead时,需要将当前读取请求的start\_ts与CurrencyManager中的max\_ts进行比较,并将二者中的最大值更新为全局max_ts。这一操作用于保证异步提交事务计算出来的MinCommitTs不会破坏快照一致性。

2. 若当前的隔离级别是SnapshotIsolation或者RcCheckTs时, 则需要额外检查CurrencyManager中的内存锁。如果存在锁且当前start\_ts大于锁中的MinCommitTs,TiKV会直接拒绝本次读取请求。其原因在于AsyncCommit事务Prewrite结束之前需要暂时阻止使用更新的start\_ts发起的快照读,否则会导致正在异步提交的事务计算出的MinCommitTS无法满足快照一致性。

4.4.2 向Engine申请Snapshot

Engine是TiKV中对上层存储组件的一次抽象,所有实现了Engine Trait的具体实现都可以作为TiKV中的存储层组件。目前TiKV中已经实现了BTreeEngine/MockEngine/RocksEngine/RaftKV等多个实现。

pub trait Engine: Send + Clone + 'static {
   // 获取用于查询的快照
   fn async_snapshot(&mut self, ctx: SnapContext<'_>) -> Self::SnapshotRes;
     
   // 提交写入的Mutation
   fn async_write(&self,ctx: &Context,batch: WriteData,subscribed: u8, on_applied: Option<OnAppliedCb>) -> Self::WriteRes;
 
   // 其他接口...
}

Engine的接口定义中与读写相关的接口分别是async\_snapshot和async\_write。目前TiKV中的默认Engine实现为RaftKV,即一个基于Raftstore的实现。在RaftKV中,所有的写入都会通过Raft状态机进行propose/commit/apply流程,用户可以基于订阅机制获得这3个事件的通知从而做出不同处理,默认情况下,TiKV会在一次写入请求被RaftLeader apply成功后返回用户。而读取操作则需要遵循先行一致性读取,在早期版本中,一次读取需要通过Raft状态机进行一次ReadIndex才能进行,在新版中TiKV实现了基于租约的LeaseRead, 简化了读取流程。本次介绍的PointGet读取流程中,会涉及到使用async_snapshot获取一个Engine在当前时刻的快照,并基于快照进行读取。

TiKV按照KeyRange将Key拆分为不同的Region, 每个Region都是一个RaftGroup,且拥有独立的状态机推进运转。因此,RaftKV-Engine中async_snapshot返回的是一个名为RegionSnapshot的对象,其定义如下:

pub struct RegionSnapshot<S: Snapshot> {
    snap: Arc<S>,
    region: Arc<Region>,
    apply_index: Arc<AtomicU64>,
    pub term: Option<NonZeroU64>,
    pub txn_extra_op: TxnExtraOp,
    // `None` means the snapshot does not provide peer related transaction extensions.
    pub txn_ext: Option<Arc<TxnExt>>,
    pub bucket_meta: Option<Arc<BucketMeta>>,
}

RegionSnapshot本质是对底层的KV引擎RocksDB层面的快照的封装,其逻辑视图如下:

图片

4.4.3 MVCC实现和快照隔离级别实现

前文提到的Engine::async_snapshot接口返回的快照本质是Engine在当下时刻的快照,并不等于事务层面的MVCC快照,因此在具体查询时,需要配合StartTS进行使用。TiKV中封装了一个SnapshotStore用于辅助MVCC层面的查询。其定义如下:

pub struct SnapshotStore<S: Snapshot> {
    snapshot: S,
    start_ts: TimeStamp,
    isolation_level: IsolationLevel,
    fill_cache: bool,
    bypass_locks: TsSet,
    access_locks: TsSet,
    check_has_newer_ts_data: bool,
    point_getter_cache: Option<PointGetter<S>>,
}

SnapshotStore中集合了从Engine获取的快照和客户端请求附带的StartTS, 因此可以被认为是一个MVCC层面的快照。用户对SnapshotStore发起的点查会被委托给内部的PointGetter。

// PointGetter::get
pub fn get(&mut self, user_key: &Key) -> Result<Option<Value>> {
        fail_point!("point_getter_get");
          
        // 根据当前请求使用的隔离级别判定是否需要检查锁
        if need_check_locks(self.isolation_level) {
            // 如果需要检查锁且锁存在,则需要根据判定锁
            if let Some(lock) = self.load_and_check_lock(user_key)? {
                return self.load_data_from_lock(user_key, lock);
            }
        }
          
        // Percoaltor正常读取流程:从WriteCF中找到<=start_ts中最大的commit_ts,并基于其存储的start_ts到DefaultCF中读取        
        self.load_data(user_key)
}

在执行查询前,TiKV需要根据当前请求的隔离级别判定是否需要检查锁。

pub fn need_check_locks(iso_level: IsolationLevel) -> bool {
    matches!(iso_level, IsolationLevel::Si | IsolationLevel::RcCheckTs)
}

TiKV支持SnapshotIsolation/ReadCommitted/ReadCommittedCheckTs三种隔离级别,其中前两种需要检查锁。其原因在于LockCf中的锁是由于事务在2PC的第一阶段提交阶段写入的,事务的最终状态无法确定,如果不检查锁直接读取,那么可能导致快照读取被破坏。

fn load_and_check_lock(&mut self, user_key: &Key) -> Result<Option<Lock>> {
        // 从LockCf查询该Key的锁信息
        let lock_value = self.snapshot.get_cf(CF_LOCK, user_key)?;
  
        if let Some(ref lock_value) = lock_value {
            let lock = Lock::parse(lock_value)?;
            // 如果存在锁则检查锁是否冲突
            if let Err(e) = Lock::check_ts_conflict(
                Cow::Borrowed(&lock),
                user_key,
                self.ts,
                &self.bypass_locks,
                self.isolation_level,
            )
        // ...
}

其中Lock::check\_ts\_conflict的实现中会根据当前的事务隔离级别进行判定,不同的隔离级别的判定逻辑略有差异。由于本文篇幅有限,这里只分析我们常用的快照隔离级别的实现。

fn check_ts_conflict_si(lock: Cow<'_, Self>, key: &Key, ts: TimeStamp, bypass_locks: &TsSet ) -> Result<()> {
        if lock.ts > ts
            || lock.lock_type == LockType::Lock
            || lock.lock_type == LockType::Pessimistic
        {
            return Ok(());
        }
  
        if lock.min_commit_ts > ts {
            // Ignore lock when min_commit_ts > ts
            return Ok(());
        }
  
        if bypass_locks.contains(lock.ts) {
            return Ok(());
        }
  
        let raw_key = key.to_raw()?;
  
        if ts == TimeStamp::max() && raw_key == lock.primary && !lock.use_async_commit {
            // When `ts == TimeStamp::max()` (which means to get latest committed version
            // for primary key), and current key is the primary key, we ignore
            // this lock.
            return Ok(());
        }
  
        // There is a pending lock. Client should wait or clean it.
        Err(Error::from(ErrorInner::KeyIsLocked(
            lock.into_owned().into_lock_info(raw_key),
        )))
}
  • 当lock.ts > ts时,当前查询请求可以直接忽略这个锁。其原因在于当前的lock是由具有更高start\_ts的事务写入,因此即便这个事务后续被提交,其commit\_ts一定大于当前的start_ts,其新写入的数据是不可见的,不会破坏快照一致性。
  • 当lock_type==Lock时,也可以直接忽略这个锁突, 其原因在于LockType::Lock是由于创建索引产生,它只用于指示被锁定但不会修改数据,因此也可以直接被忽略。
  • 当lock_type==Pessistics时,也可以直接忽略这个锁突,LockType::Pessistics是由于悲观事务执行DML时写入,并未进行到事务提交阶段,即使这个事务很快被提交,由于其commit\_ts也一定大于当前读取的start\_ts, 直接忽略并不会影响快照一致性。
  • 当lock.min\_commit\_ts > ts时,也可以直接忽略这个锁,其原因在于它能保证这个AsyncCommit事务的最终计算出的commit_ts一定大于ts,即使这个事务会被提交,也不会破坏快照一致性。
  • 当bypass\_locks中包含了当前锁的start\_ts时, 也可以直接忽略这个锁。bypass\_locks即前面Read through locks小节中提到了resloved\_locks,这些锁虽然存在,但它们对应事务要么已经被回滚,要么使用了大于当前读取start\_ts的commit\_ts进行提交,无论是哪种情况都不会破坏快照一致性。
  • 其他情况则需要返回KeyIsLocked错误给客户端,客户端收到这个错误后则会检查这个锁的过期时间,如果锁尚未过期则需要做wait,否则会尝试进行解锁恢复这个事务的状态。

若check\_ts\_conflict\_si返回KeyIsLocked或其他错误后,TiKV会额外检查access\_locks里是否包含该锁,如果该锁存在,则KeyIsLocked错误则会被忽略,同时锁会被直接返回,外层函数可以通过锁找到start\_ts从而直接读取DefaultCF中的数据。这里的access\_locks即Read through locks中的committed\_locks,即已经知晓被提交的且commit\_ts小于当前快照读start\_ts的事务,在这种情况下,直接读取DefaultCF是一个超前但安全的操作,原因在在于一旦这个Lock被Resolve,用户通过新的commit\_ts可以定位到同一个start_ts。

if let Err(e) = Lock::check_ts_conflict(Cow::Borrowed(&lock),user_key,self.ts,&self.bypass_locks,self.isolation_level) {
    if self.access_locks.contains(lock.ts) {
        return Ok(Some(lock));
   }
    Err(e.into())
}

在不存在Key被锁定或冲突,且没有使用Read through locks读取后,TiKV则会进行正常的Percolator读取流程,即从WriteCF中找到<=start\_ts中最大的commit\_ts,并基于其存储的start_ts到DefaultCF中读取。

4.4.4 RegionSnapshot的Get实现

RegionSnapshot::get的实现相对比较简单,逻辑如下:

fn get_value_cf_opt(&self, opts: &ReadOptions, cf: &str, key: &[u8]) -> EngineResult<Option<Self::DbVector>> {
    // 1. 检查查询的key是否在Region的范围内, 如果不在则直接返回错误。
    check_key_in_range(key,self.region.get_id(),self.region.get_start_key(),self.region.get_end_key()).map_err(|e| EngineError::Other(box_err!(e)))?;
      
    // 2. 基于查询的key拼接出raftstore层面的DataKey (raftstore在写入时会给用户key前添加一个前缀'z')。
    let data_key = keys::data_key(key);
      
    // 3. 使用内部的RocksSnapshot查询RocksDB获取key对应的值。
    self.snap.get_value_cf_opt(opts, cf, &data_key).map_err(|e| self.handle_get_value_error(e, cf, key))
}

4.4.5 RocksDB/Titan的Get实现

TiKV使用rust-rocksdb库使用FFI实现与RocksDB C-API的交互,RocksSnapshot::get会通过crocksdb\_get\_pinned_cf将查询接口委托给底层的RocksDB。值得注意的是,TiKV使用的并不是官方的RocksDB,而是自行维护的一个整合了Titan插件的版本。Titan是一个受WiscKey论文启发而创建的项目,其主要目的是将存入RocksDB的大Value从LSM-Tree中分离出来,存储到额外的Blob文件中,从而达到减小写放大的目的。

本小节我们着重分析一下TitanDB中一次查询的实现过程(做过大量精简):

Status TitanDBImpl::GetImpl(const ReadOptions& options,
                            ColumnFamilyHandle* handle, const Slice& key,
                            PinnableSlice* value) {
    
  // 先查询RocksDB
  s = db_impl_->GetImpl(options, key, gopts);
  
  // 如果Key的Value不存在或者不是BlobIndex, 则直接返回
  if (!s.ok() || !is_blob_index) return s;
    
  // Value是BlobIndex,说明这是一个索引,还需要额外查询BlobStorage
  BlobIndex index;
  s = index.DecodeFrom(value);
  assert(s.ok());
  if (!s.ok()) return s;
  
  BlobRecord record;
  PinnableSlice buffer;
  
  mutex_.Lock();
  // 根据索引查询BlobStorage
  auto storage = blob_file_set_->GetBlobStorage(handle->GetID()).lock();
  mutex_.Unlock();
  
  if (s.ok()) {
    value->Reset();
    value->PinSelf(record.value);
  }
  return s;
}

五、总结

  1. TiKV对数据存储层的职能进行了非常合理的抽象,通过Engine/Snapshot/Iterator等trait定义实现了存储层与上层的解耦。
  2. TiKV在RocksDB提供的多列族原子性写入能力之上实现了Percolator模型,提供了分布式事务和MVCC等能力,并实现了AsyncCommit和1PC等改善了事务提交延迟。
  3. TiKV实现了一个基于RocksDB的KV分离插件titan, 借鉴了Wisckey的思想将大Value从LSM-Tree中分离,在大Value的业务场景下能够通过降低写放大改善性能。
  4. 从PointGet的实现我们可以看到在使用了MVCC的情况下,查询时遇到前一事务Prewrite产生的Lock仍然需要等待Resolve, 因此在AsyncCommit开启的前提下,业务开发需要尽量避免设计事务提交后即刻发起查询的场景,此外也要尽量避免由于大事务提交延迟高影响相关的查询。

参考资料:


vivo互联网技术
3.3k 声望10.2k 粉丝