头图

本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯度下降方法介绍 1 详解梯度下降算法 线性回归 2.6 线性回归api再介绍 小结 线性回归 2.9 正则化线性模型 1 Ridge Regression (岭回归,又名 Tikhonov regularization) 逻辑回归 3.3 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测 1 背景介绍 决策树算法 4.2 决策树分类原理 1 熵 决策树算法 4.3 cart剪枝 1 为什么要剪枝 决策树算法 4.4 特征工程-特征提取 1 特征提取 决策树算法 4.5 决策树算法api 4.6 案例:泰坦尼克号乘客生存预测 集成学习基础 5.1 集成学习算法简介 1 什么是集成学习 2 复习:机器学习的两个核心任务 集成学习基础 5.3 otto案例介绍 -- Otto Group Product Classification Challenge 1.背景介绍 2.数据集介绍 3.评分标准 集成学习基础 5.5 GBDT介绍 1 Decision Tree:CART回归树 1.1 回归树生成算法(复习) 聚类算法 6.1 聚类算法简介 1 认识聚类算法 聚类算法 6.5 算法优化 1 Canopy算法配合初始聚类 聚类算法 6.7 案例:探究用户对物品类别的喜好细分 1 需求 第一章知识补充:再议数据分割 1 留出法 2 交叉验证法 KFold和StratifiedKFold 3 自助法 正规方程的另一种推导方式 1.损失表示方式 2.另一种推导方式 梯度下降法算法比较和进一步优化 1 算法比较 2 梯度下降优化算法 第二章知识补充: 多项式回归 1 多项式回归的一般形式 维灾难 1 什么是维灾难 2 维数灾难与过拟合 第三章补充内容:分类中解决类别不平衡问题 1 类别不平衡数据集基本介绍 向量与矩阵的范数 1.向量的范数 2.矩阵的范数 如何理解无偏估计?无偏估计有什么用? 1.如何理解无偏估计

仓库里完整资料代码:

博客文章1: https://segmentfault.com/a/1190000045183230

博客文章2: https://segmentfault.com/a/1190000045181680

博客文章3: https://segmentfault.com/a/1190000045172237

感兴趣的小伙伴可以自取哦~


全套教程部分目录:


部分文件图片:

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.8 案例:鸢尾花种类预测—流程实现

学习目标

  • 目标

    • 知道KNeighborsClassifier的用法

1 再识K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

    • n_neighbors:

      • int,可选(默认= 5),k_neighbors查询默认使用的邻居数
    • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’}

      • 快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,

        • brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。
        • kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。
        • ball tree是为了克服kd树高维失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。

2 案例:鸢尾花种类预测

2.1 数据集介绍

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:

img

2.2 步骤分析

  • 1.获取数据集
  • 2.数据基本处理
  • 3.特征工程
  • 4.机器学习(模型训练)
  • 5.模型评估

2.3 代码过程

  • 导入模块
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
  • 先从sklearn当中获取数据集,然后进行数据集的分割
  
  
# 1.获取数据集
  
  
iris = load_iris()

  
  
# 2.数据基本处理
  
  
  
  
# x_train,x_test,y_train,y_test为训练集特征值、测试集特征值、训练集目标值、测试集目标值
  
  
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
  • 进行数据标准化

    • 特征值的标准化
  
  
# 3、特征工程:标准化
  
  
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
  • 模型进行训练预测
  
  
# 4、机器学习(模型训练)
  
  
estimator = KNeighborsClassifier(n_neighbors=9)
estimator.fit(x_train, y_train)
  
  
# 5、模型评估
  
  
  
  
# 方法1:比对真实值和预测值
  
  
y_predict = estimator.predict(x_test)
print("预测结果为:\n", y_predict)
print("比对真实值和预测值:\n", y_predict == y_test)
  
  
# 方法2:直接计算准确率
  
  
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

3 案例小结

在本案例中,具体完成内容有:
  • 使用可视化加载和探索数据,以确定特征是否能将不同类别分开。
  • 通过标准化数字特征并随机抽样到训练集和测试集来准备数据。
  • 通过统计学,精确度度量进行构建和评估机器学习模型。

同学之间讨论刚才完成的机器学习代码,并且确保在自己的电脑运行成功

4 总结

  • KNeighborsClassifier的使用【知道】

    • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

      • algorithm(auto,ball_tree, kd_tree, brute) -- 选择什么样的算法进行计算

1.9 KNN算法总结

k近邻算法优缺点汇总
  • 优点:
  • 简单有效
  • 重新训练的代价低
  • 适合类域交叉样本

    • KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
  • 适合大样本自动分类

    • 该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分

  • 缺点:
  • 惰性学习

    • KNN算法是懒散学习方法(lazy learning,基本上不学习),一些积极学习的算法要快很多
  • 类别评分不是规格化

    • 不像一些通过概率评分的分类
  • 输出可解释性不强

    • 例如决策树的输出可解释性就较强
  • 对不均衡的样本不擅长

    • 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
  • 计算量较大

    • 目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。

1.10 交叉验证,网格搜索

学习目标

  • 目标

    • 知道交叉验证、网格搜索的概念
    • 会使用交叉验证、网格搜索优化训练模型

1 什么是交叉验证(cross validation)

交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果。又称4折交叉验证。

1.1 分析

我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理

  • 训练集:训练集+验证集
  • 测试集:测试集

image-20191226121521481

1.2 为什么需要交叉验证

交叉验证目的:为了让被评估的模型更加准确可信

问题:这个只是让被评估的模型更加准确可信,那么怎么选择或者调优参数呢?

2 什么是网格搜索(Grid Search)

通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

3 交叉验证,网格搜索(模型选择与调优)API:

  • sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)

    • 对估计器的指定参数值进行详尽搜索
    • estimator:估计器对象
    • param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
    • cv:指定几折交叉验证
    • fit:输入训练数据
    • score:准确率
    • 结果分析:

      • bestscore__:在交叉验证中验证的最好结果
      • bestestimator:最好的参数模型
      • cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果

4 鸢尾花案例增加K值调优

  • 使用GridSearchCV构建估计器
  
  
# 1、获取数据集
  
  
iris = load_iris()
  
  
# 2、数据基本处理 -- 划分数据集
  
  
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
  
  
# 3、特征工程:标准化
  
  
  
  
# 实例化一个转换器类
  
  
transfer = StandardScaler()
  
  
# 调用fit_transform
  
  
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
  
  
# 4、KNN预估器流程
  
  
  
  
#  4.1 实例化预估器类
  
  
estimator = KNeighborsClassifier()

  
  
# 4.2 模型选择与调优——网格搜索和交叉验证
  
  
  
  
# 准备要调的超参数
  
  
param_dict = {"n_neighbors": [1, 3, 5]}
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)
  
  
# 4.3 fit数据进行训练
  
  
estimator.fit(x_train, y_train)
  
  
# 5、评估模型效果
  
  
  
  
# 方法a:比对预测结果和真实值
  
  
y_predict = estimator.predict(x_test)
print("比对预测结果和真实值:\n", y_predict == y_test)
  
  
# 方法b:直接计算准确率
  
  
score = estimator.score(x_test, y_test)
print("直接计算准确率:\n", score)
  • 然后进行评估查看最终选择的结果和交叉验证的结果
print("在交叉验证中验证的最好结果:\n", estimator.best_score_)
print("最好的参数模型:\n", estimator.best_estimator_)
print("每次交叉验证后的准确率结果:\n", estimator.cv_results_)
  • 最终结果
比对预测结果和真实值:
 [ True  True  True  True  True  True  True False  True  True  True  True
  True  True  True  True  True  True False  True  True  True  True  True
  True  True  True  True  True  True  True  True  True  True  True  True
  True  True]
直接计算准确率:
 0.947368421053
在交叉验证中验证的最好结果:
 0.973214285714
最好的参数模型:
 KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=5, p=2,
           weights='uniform')
每次交叉验证后的准确率结果:
 {'mean_fit_time': array([ 0.00114751,  0.00027037,  0.00024462]), 'std_fit_time': array([  1.13901511e-03,   1.25300249e-05,   1.11011951e-05]), 'mean_score_time': array([ 0.00085751,  0.00048693,  0.00045625]), 'std_score_time': array([  3.52785082e-04,   2.87650037e-05,   5.29673344e-06]), 'param_n_neighbors': masked_array(data = [1 3 5],
             mask = [False False False],
       fill_value = ?)
, 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}], 'split0_test_score': array([ 0.97368421,  0.97368421,  0.97368421]), 'split1_test_score': array([ 0.97297297,  0.97297297,  0.97297297]), 'split2_test_score': array([ 0.94594595,  0.89189189,  0.97297297]), 'mean_test_score': array([ 0.96428571,  0.94642857,  0.97321429]), 'std_test_score': array([ 0.01288472,  0.03830641,  0.00033675]), 'rank_test_score': array([2, 3, 1], dtype=int32), 'split0_train_score': array([ 1.        ,  0.95945946,  0.97297297]), 'split1_train_score': array([ 1.        ,  0.96      ,  0.97333333]), 'split2_train_score': array([ 1.  ,  0.96,  0.96]), 'mean_train_score': array([ 1.        ,  0.95981982,  0.96876877]), 'std_train_score': array([ 0.        ,  0.00025481,  0.0062022 ])}

5 总结

  • 交叉验证【知道】

    • 定义:

      • 将拿到的训练数据,分为训练和验证集
      • *折交叉验证
    • 分割方式:

      • 训练集:训练集+验证集
      • 测试集:测试集
    • 为什么需要交叉验证

      • 为了让被评估的模型更加准确可信
      • 注意:交叉验证不能提高模型的准确率
  • 网格搜索【知道】

    • 超参数:

      • sklearn中,需要手动指定的参数,叫做超参数
    • 网格搜索就是把这些超参数的值,通过字典的形式传递进去,然后进行选择最优值
  • api【知道】

    • sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)

      • estimator -- 选择了哪个训练模型
      • param_grid -- 需要传递的超参数
      • cv -- 几折交叉验证

程序员一诺python
16 声望16 粉丝

python技术发烧友 资料收集狂