@TOC


前言

本文只是对于pytorch深度学习框架的使用方法的介绍,如果涉及算法中复杂的数学原理,本文将不予阐述,敬请读者自行阅读相关论文或者文献。


1.tensor基础操作

1.1 tensor的dtype类型

代码含义
float3232位float
floatfloa
float6464位float
doubledouble
float1616位float
bfloat16比float范围大但精度低
int88位int
int1616位int
shortshort
int3232位int
intint
int6464位int
longlong
complex3232位complex
complex6464位complex
cfloatcomplex float
complex128128位complex float
cdoublecomplex double

1.2 创建tensor(建议写出参数名字)

创建tensor时,有很多参数可以选择,为节省篇幅,本文在列举API时只列举一次,不列举重载的API。

1.2.1 空tensor(无用数据填充)

API
@overload
def empty(size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...

size:[行数,列数]

dtype(deepth type):数据类型

device:选择运算设备

requires_grad:是否进行自动求导,默认为False

示例
       gpu=torch.device("cuda")
       empty_tensor=torch.empty(size=[3,4],device=gpu,requires_grad=True)
       print(empty_tensor)

输出

tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 0., 0.]], device='cuda:0', requires_grad=True)

1.2.2 全一tensor

@overload
def ones(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...

size:[行数,列数]

dtype(deepth type):数据类型

device:选择运算设备

requires_grad:是否进行自动求导,默认为False

1.2.3 全零tensor

@overload
def zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...

1.2.4 随机值[0,1)的tensor

@overload
def rand(size: _size, *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...

1.2.5 随机值为整数且规定上下限的tensor

API
@overload
def randint(low: _int, high: _int, size: _size, *, generator: Optional[Generator]=None, dtype: Optional[_dtype]=None, device: Device=None, requires_grad: _bool=False) -> Tensor: ...
示例
   int_tensor=torch.randint(low=0,high=20,size=[5,6],device=gpu)
   print(int_tensor)

输出

tensor([[18,  0, 14,  7, 18, 14],
        [17,  0,  2,  0,  0,  3],
        [16, 17,  5, 15,  1, 14],
        [ 7, 12,  8,  6,  4, 11],
        [12,  4,  7,  5,  3,  3]], device='cuda:0')

1.2.6 随机值均值0方差1的tensor

@overload
def randn(size: _size, *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype]=None, layout: Optional[_layout]=None, device: Optional[Union[_device, str, None]]=None, pin_memory: Optional[_bool]=False, requires_grad: Optional[_bool]=False) -> Tensor: ...

1.2.7 从列表或numpy数组创建tensor

def tensor(data: Any, dtype: Optional[_dtype]=None, device: Device=None, requires_grad: _bool=False) -> Tensor: ...
  • 如果使用torch.from_numpy(),返回的tensor与ndarray共享内存。

1.3 tensor常用成员函数和成员变量

1.3.1 转为numpy数组

def numpy(self,*args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ 
    pass
  • 只有在CPU上运算的tensor才可以转为numpy数组
  • tensor.requires_grad属性为True的tensor不能转为numpy数组

1.3.2 获得单元素tensor的值item

def item(self): # real signature unknown; restored from __doc__
    ...
  • 如果tensor只有一个元素,就返回它的值
  • 如果tensor有多个元素,抛出ValueError

1.3.3 获取维度个数

def dim(self): #real signature unknown; restored from __doc__
    return 0
  • 返回一个int表示维度个数

1.3.4 获取数据类型

dtype = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default

1.3.5 获取形状

def size(self,dim=None): # real signature unknown; restored from __doc__
    pass
  • 使用.shape效果相同

1.3.6 浅拷贝与深拷贝

detach函数浅拷贝

假设有模型A和模型B,我们需要将A的输出作为B的输入,但训练时我们只训练模型B. 那么可以这样做:

input_B = output_A.detach()

它可以使两个计算图的梯度传递断开,从而实现我们所需的功能。

返回一个新的tensor,新的tensor和原来的tensor共享数据内存,但不涉及梯度计算,即requires_grad=False。修改其中一个tensor的值,另一个也会改变,因为是共享同一块内存。

   sequence_tensor=torch.tensor(np.array([[[1,2,3],
                                            [4,5,6]],

                                           [[9,8,7],
                                            [6,5,4]]]),
                                 dtype=torch.float,device=gpu,)
   sequence_tensor_shallowCp=sequence_tensor.detach()
   sequence_tensor_shallowCp+=1
   print(sequence_tensor)
   print(sequence_tensor_shallowCp.requires_grad)

输出

tensor([[[ 2.,  3.,  4.],
         [ 5.,  6.,  7.]],

        [[10.,  9.,  8.],
         [ 7.,  6.,  5.]]], device='cuda:0')
False
深拷贝
  • 法一:.clone().detach()
  • 法二:.new_tensor()

1.3.7 形状变换

转置

向量或矩阵转置

def t(self): # real signature unknown; restored from __doc__
    """
    t() -> Tensor
  
    See :func:`torch.t`
    """
    return _te.Tensor(*(), **{})
  • 返回值与原tensor共享内存!

指定两个维度进行转置:

def permute(self, dims: _size) -> Tensor: 
    r"""
    permute(*dims) -> Tensor
  
    See :func:`torch.permute`
    """
    ...
  • 返回值与原tensor共享内存!
  • 对矩阵来说,.t()等价于.permute(0, 1)

多维度同时转置

def permute(self, *dims): # real signature unknown; restored from __doc__
    """
    permute(*dims) -> Tensor
  
    See :func:`torch.permute`
    """
    return _te.Tensor(*(), **{})
  • 把要转置的维度放到对应位置上,比如对于三维tensor,x、y、z分别对应0、1、2,如果想要转置x轴和z轴,则输入2、1、0即可
  • 返回值与原tensor共享内存!
cat堆叠

cat可以把两个或多个tensor沿着指定的维度进行连接,连接后的tensor维度个数不变,指定维度上的大小改变,非指定维度上的大小不变。譬如,两个shape=(3,)行向量按dim=0连接,变成1个shape=(6,)的行向量;2个3阶方阵按dim=0连接,就变成1个(6, 3)的矩阵。

cat在使用时对输入的这些tensor有要求:除了指定维度,其他维度的大小必须相同。譬如,1个shape=(1, 6)的矩阵可以和1个shape=(2, 6)的矩阵在dim=0连接。

例子可以参考下面的定义和注释。

def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: 
    r"""
    cat(tensors, dim=0, *, out=None) -> Tensor
  
    Concatenates the given sequence of :attr:`seq` tensors in the given dimension.
    All tensors must either have the same shape (except in the concatenating
    dimension) or be a 1-D empty tensor with size ``(0,)``.
  
    :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split`
    and :func:`torch.chunk`.
  
    :func:`torch.cat` can be best understood via examples.
  
    .. seealso::
  
        :func:`torch.stack` concatenates the given sequence along a new dimension.
  
    Args:
        tensors (sequence of Tensors): any python sequence of tensors of the same type.
            Non-empty tensors provided must have the same shape, except in the
            cat dimension.
        dim (int, optional): the dimension over which the tensors are concatenated
  
    Keyword args:
        out (Tensor, optional): the output tensor.
  
    Example::
  
        >>> x = torch.randn(2, 3)
        >>> x
        tensor([[ 0.6580, -1.0969, -0.4614],
                [-0.1034, -0.5790,  0.1497]])
        >>> torch.cat((x, x, x), 0)
        tensor([[ 0.6580, -1.0969, -0.4614],
                [-0.1034, -0.5790,  0.1497],
                [ 0.6580, -1.0969, -0.4614],
                [-0.1034, -0.5790,  0.1497],
                [ 0.6580, -1.0969, -0.4614],
                [-0.1034, -0.5790,  0.1497]])
        >>> torch.cat((x, x, x), 1)
        tensor([[ 0.6580, -1.0969, -0.4614,  0.6580, -1.0969, -0.4614,  0.6580,
                 -1.0969, -0.4614],
                [-0.1034, -0.5790,  0.1497, -0.1034, -0.5790,  0.1497, -0.1034,
                 -0.5790,  0.1497]])
    """
    ...
  • 返回值与原tensor不共享内存
stack堆叠

stackcat有很大的区别,stack把两个或多个tensor在dim创建一个全新的维度进行连接,非指定维度个数不变,创建的维度的大小取决于这次连接使用了多少个tensor。譬如,3个shape=(3,)行向量按dim=0连接,会变成一个shape=(3, 3)的矩阵;两个3阶方阵按dim=-1连接,就变成一个(3, 3, 2)的tensor。

def stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: 
    r"""
    stack(tensors, dim=0, *, out=None) -> Tensor
  
    Concatenates a sequence of tensors along a new dimension.
  
    All tensors need to be of the same size.
  
    .. seealso::
  
        :func:`torch.cat` concatenates the given sequence along an existing dimension.
  
    Arguments:
        tensors (sequence of Tensors): sequence of tensors to concatenate
        dim (int, optional): dimension to insert. Has to be between 0 and the number
            of dimensions of concatenated tensors (inclusive). Default: 0
  
    Keyword args:
        out (Tensor, optional): the output tensor.
  
    Example::
  
        >>> x = torch.randn(2, 3)
        >>> x
        tensor([[ 0.3367,  0.1288,  0.2345],
                [ 0.2303, -1.1229, -0.1863]])
        >>> x = torch.stack((x, x)) # same as torch.stack((x, x), dim=0)
        >>> x
        tensor([[[ 0.3367,  0.1288,  0.2345],
                 [ 0.2303, -1.1229, -0.1863]],
  
                [[ 0.3367,  0.1288,  0.2345],
                 [ 0.2303, -1.1229, -0.1863]]])
        >>> x.size()
        torch.Size([2, 2, 3])
        >>> x = torch.stack((x, x), dim=1)
        tensor([[[ 0.3367,  0.1288,  0.2345],
                 [ 0.3367,  0.1288,  0.2345]],
  
                [[ 0.2303, -1.1229, -0.1863],
                 [ 0.2303, -1.1229, -0.1863]]])
        >>> x = torch.stack((x, x), dim=2)
        tensor([[[ 0.3367,  0.3367],
                 [ 0.1288,  0.1288],
                 [ 0.2345,  0.2345]],
  
                [[ 0.2303,  0.2303],
                 [-1.1229, -1.1229],
                 [-0.1863, -0.1863]]])
        >>> x = torch.stack((x, x), dim=-1)
        tensor([[[ 0.3367,  0.3367],
                 [ 0.1288,  0.1288],
                 [ 0.2345,  0.2345]],
  
                [[ 0.2303,  0.2303],
                 [-1.1229, -1.1229],
                 [-0.1863, -0.1863]]])
    """
    ...
  • 返回值与原tensor不共享内存
view改变形状

view先把数据变成一维数组,然后再转换成指定形状。变换前后的元素个数并不会改变,所以变换前后的shape的乘积必须相等。详细例子如下:

def view(self, *shape): # real signature unknown; restored from __doc__
    """
    Example::
  
        >>> x = torch.randn(4, 4)
        >>> x.size()
        torch.Size([4, 4])
        >>> y = x.view(16)
        >>> y.size()
        torch.Size([16])
        >>> z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
        >>> z.size()
        torch.Size([2, 8])
  
        >>> a = torch.randn(1, 2, 3, 4)
        >>> a.size()
        torch.Size([1, 2, 3, 4])
        >>> b = a.transpose(1, 2)  # Swaps 2nd and 3rd dimension
        >>> b.size()
        torch.Size([1, 3, 2, 4])
        >>> c = a.view(1, 3, 2, 4)  # Does not change tensor layout in memory
        >>> c.size()
        torch.Size([1, 3, 2, 4])
        >>> torch.equal(b, c)
        False 
    """
    return _te.Tensor(*(), **{})
  • 返回值与原tensor共享内存
reshape改变形状

reshapeview的区别如下:

  • view只能改变连续(.contiguous())的tensor,如果已经对tensor进行了permute、transpose等操作,tensor在内存中会变得不连续,此时调用view会报错。且view方法与原来的tensor共享内存。
  • reshape再调用时自动检测原tensor是否连续,如果是,则等价于view;如果不是,先调用.contiguous(),再调用view,此时返回值与原来tensor不共享内存
    def reshape(self, shape: Sequence[Union[_int, SymInt]]) -> Tensor: 
        ...

1.3.8 数学运算

在这里插入图片描述

    def mean(self, dim=None, keepdim=False, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ 
        ...
    def sum(self, dim=None, keepdim=False, dtype=None): # real signature unknown; restored from __doc__
        ...
    def median(self, dim=None, keepdim=False): # real signature unknown; restored from __doc__
        ...
    def mode(self, dim=None, keepdim=False): # real signature unknown; restored from __doc__
        ...
    def dist(self, other, p=2): # real signature unknown; restored from __doc__
        ...
    def std(self, dim, unbiased=True, keepdim=False): # real signature unknown; restored from __doc__
        ...
    def var(self, dim, unbiased=True, keepdim=False): # real signature unknown; restored from __doc__
        ...
    def cumsum(self, dim, dtype=None): # real signature unknown; restored from __doc__
        ...
    def cumprod(self, dim, dtype=None): # real signature unknown; restored from __doc__
        ...

在这里插入图片描述

1.3.9 使用指定设备计算tensor

to可以把tensor转移到指定设备上。

    def to(self, *args, **kwargs): # real signature unknown; restored from __doc__
        """
        Example::
      
            >>> tensor = torch.randn(2, 2)  # Initially dtype=float32, device=cpu
            >>> tensor.to(torch.float64)
            tensor([[-0.5044,  0.0005],
                    [ 0.3310, -0.0584]], dtype=torch.float64)
      
            >>> cuda0 = torch.device('cuda:0')
            >>> tensor.to(cuda0)
            tensor([[-0.5044,  0.0005],
                    [ 0.3310, -0.0584]], device='cuda:0')
      
            >>> tensor.to(cuda0, dtype=torch.float64)
            tensor([[-0.5044,  0.0005],
                    [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')
      
            >>> other = torch.randn((), dtype=torch.float64, device=cuda0)
            >>> tensor.to(other, non_blocking=True)
            tensor([[-0.5044,  0.0005],
                    [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0')
        """
        return _te.Tensor(*(), **{})

2.线性回归模型

2.1 自动求导机制

  • 在pytorch中,如果设置一个 tensor 的属性 requires_grad 为 True,那么它将会追踪对于该张量的所有操作。当完成计算后可以通过调用 tensor.backward 函数,来自动计算所有的梯度。这个张量的所有梯度将会自动累加到 grad 属性。
  • 由于是累加,因此在进行线性回归模型的计算时,每轮都要用 tensor.zero_ 函数清空一次 grad 属性

示例

   sequence_tensor=torch.tensor(np.array([[[1,2,3],
                                            [4,5,6]],

                                           [[9,8,7],
                                            [6,5,4]]]),
                                 dtype=torch.float,device=gpu,requires_grad=True)
   multi_tensor=sequence_tensor*3+1
   multi_tensor_mean=multi_tensor.mean()
   multi_tensor_mean.backward()
   print(sequence_tensor.grad)

输出

tensor([[[0.2500, 0.2500, 0.2500],
         [0.2500, 0.2500, 0.2500]],

        [[0.2500, 0.2500, 0.2500],
         [0.2500, 0.2500, 0.2500]]], device='cuda:0')

2.2 nn.Module的继承(from torch import nn)

2.2.1 概述

nn.Module是torch.nn提供的一个类,是pytorch中定义网络的必要的一个父类,在这个类中定义了很多有用的方法,使我们非常方便地计算。在我们进行网络的定义时,有两个地方需要特别注意:

  • 在定义成员变量时必须调用super函数,继承父类__init__参数,即,在\_\_init_\_中必须调用super(\<the name of the variable>,self)函数
  • 通常还会在__init__中定义网络的结构
  • 必须定义forward函数,表示网络中前向传播的过程

2.2.2 实例

    class lr(nn.Module):
        def __init__(self):
            super(lr,self).__init__()
            self.linear=nn.Linear(1,1)

        def forward(self,x):
            y_predict=self.linear(x)
            return y_predict

其中,nn.Linear函数的参数为:输入的特征量,输出的特征量。

2.3 优化器类(from torch import optim)

2.3.1 概述

优化器(optimizer),用来操纵参数的梯度以更新参数,常见的方法有随机梯度下降(stochastic gradient descent)(SGD)等。

  • torch.optim.SGD(参数,float 学习率)
  • torch.optim.Adam(参数,float 学习率)

2.3.2 流程

  • 调用Module.parameters函数获取模型参数,并定义学习率,进行实例化
  • 用实例化对象调同 .zero_grad 函数,将参数重置为0
  • 调用tensor.backward函数反向传播,获得梯度
  • 用实例化对象调用 .step 函数更新参数

2.3.3 动态学习率(import torch.optim.lr_scheduler)

lr_scheduler允许模型在训练的过程中动态更新学习率,且提供了许多种策略可供选择,以下列举一些常用的:

指数衰减:在训练的过程中,学习率以设定的gamma参数进行指数的衰减。

class ExponentialLR(LRScheduler):
    """Decays the learning rate of each parameter group by gamma every epoch.
    When last_epoch=-1, sets initial lr as lr.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        gamma (float): Multiplicative factor of learning rate decay.
        last_epoch (int): The index of last epoch. Default: -1.
        verbose (bool): If ``True``, prints a message to stdout for
            each update. Default: ``False``.
    """

    def __init__(self, optimizer, gamma, last_epoch=-1, verbose=False):
        self.gamma = gamma
        super().__init__(optimizer, last_epoch, verbose)

固定步长衰减:在固定的训练周期后,以指定的频率进行衰减。

class StepLR(LRScheduler):
    """Decays the learning rate of each parameter group by gamma every
    step_size epochs. Notice that such decay can happen simultaneously with
    other changes to the learning rate from outside this scheduler. When
    last_epoch=-1, sets initial lr as lr.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        step_size (int): Period of learning rate decay.
        gamma (float): Multiplicative factor of learning rate decay.
            Default: 0.1.
        last_epoch (int): The index of last epoch. Default: -1.
        verbose (bool): If ``True``, prints a message to stdout for
            each update. Default: ``False``.

    Example:
        >>> # xdoctest: +SKIP
        >>> # Assuming optimizer uses lr = 0.05 for all groups
        >>> # lr = 0.05     if epoch < 30
        >>> # lr = 0.005    if 30 <= epoch < 60
        >>> # lr = 0.0005   if 60 <= epoch < 90
        >>> # ...
        >>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
        >>> for epoch in range(100):
        >>>     train(...)
        >>>     validate(...)
        >>>     scheduler.step()
    """

    def __init__(self, optimizer, step_size, gamma=0.1, last_epoch=-1, verbose=False):
        self.step_size = step_size
        self.gamma = gamma
        super().__init__(optimizer, last_epoch, verbose)
  • 用法:创建scheduler的时候绑定optimizer对象,然后在调用optimizer.step()后面跟着scheduler.step()即可。

2.4 代价函数(from torch import nn)

在torch.nn中已经定义好了很多代价函数,只需要调用它们并且传入真实值、预测值,就可以返回结果,例如:

  • 均方误差:nn.MSELoss()
  • 交叉熵误差:nn.CrossEntropyLoss()

当然,也可以自己定义loss的计算过程。

2.5 评估模型

  • Module.eval()表示设置模型为评估模式,即预测模式
  • Module.train(mdoe=True)表示设置模型为训练模式

2.6 线性回归模型的建立

2.6.1 流程

  1. 定义网络,注意:实现super函数和forward函数
  2. 准备数据
  3. 实例化网络、代价函数、优化器
  4. 进行循环,调用Module.forward函数前向传播,调用代价函数进行计算,调用优化器类进行参数更新
  5. 使用pyplot进行模型评估

2.6.2 示例

if __name__=="__main__":

    import torch
    import numpy as np
    from torch import nn
    from torch import optim
    from matplotlib import pyplot
    gpu=torch.device("cuda")
    cpu="cpu"

    #定义网络
    class lr(nn.Module):
        def __init__(self):
            #继承成员变量
            super(lr,self).__init__()
            self.linear=nn.Linear(1,1)

        #定义前向传播函数
        def forward(self,x):
            y_predict=self.linear(x)
            return y_predict


    #准备数据
    x_train=torch.rand([200,1],device=gpu)
    y_train=torch.matmul(x_train,torch.tensor([[3]],dtype=torch.float32,requires_grad=True,device=gpu))+8

    #实例化
    model_lr=lr().to(gpu)
    optimizer=optim.SGD(model_lr.parameters(),0.02)
    cost_fn=nn.MSELoss()

    #开始计算
    for i in range(1000):
         y_predict=model_lr.forward(x_train)
         cost=cost_fn(y_predict,y_train)
         optimizer.zero_grad()

         cost.backward(retain_graph=True)

         optimizer.step()

         if i%20==0:
             print(cost.item())
             print(list(model_lr.parameters()))

    #进行预测与评估
    model_lr.eval()
    y_predict_numpy=model_lr.forward(x_train).to(cpu).detach().numpy()
    x_train_numpy=x_train.to(cpu).detach().numpy()
    y_train_numpy=y_train.to(cpu).detach().numpy()
    pyplot.scatter(x_train_numpy,y_predict_numpy,c="r")
    pyplot.plot(x_train_numpy,y_train_numpy)
    pyplot.show()

输出

4.7310328227467835e-05
[Parameter containing:
tensor([[3.0237]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([7.9876], device='cuda:0', requires_grad=True)]

绘制图
在这里插入图片描述

3.数据集和数据加载器 (from torch.utils.data import Dataset,DataLoader)

3.1 Dataset类的继承(from torch.utils.data import Dataset)

3.1.1 概述

在pytorch中提供了数据集的父类torch.utils.data.Dataset,继承这个父类,我们可以非常快速地实现对数据的加载,与继承nn.Module类一样,我们同样必须定义一些必要的成员函数

  • \_\_getitem__(self,index),用来进行索引,可以用 [ ]
  • \_\_len__(self),用来获取元素个数

3.1.2 实例

    SMSData_path="D:\Desktop\PycharmProjects\exercise\SMSSpamCollection"
    #数据来源:http://archive.ics.uci.edu/ml/machine-learning-databases/00228/
    class SMSData(Dataset):
        def __init__(self):
            self.data=open(SMSData_path,"r",encoding="utf-8").readlines()

        def __getitem__(self, index):
            current_line=self.data[index].strip()
            label=current_line[:4].strip()
            content=current_line[4:].strip()
            return [label,content]

        def __len__(self):
            return len(self.data)

    SMSex=SMSData()
    print(SMSex.__getitem__(5))
    print(SMSex.__len__())

输出

['spam', "FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it still? Tb ok! XxX std chgs to send, £1.50 to rcv"]
5574

3.2 DataLoader类

3.2.1 API

class DataLoader(Generic[T_co]):
    def __init__(self, dataset: Dataset[T_co], batch_size: Optional[int] = 1,
                 shuffle: Optional[bool] = None, sampler: Union[Sampler, Iterable, None] = None,
                 batch_sampler: Union[Sampler[Sequence], Iterable[Sequence], None] = None,
                 num_workers: int = 0, collate_fn: Optional[_collate_fn_t] = None,
                 pin_memory: bool = False, drop_last: bool = False,
                 timeout: float = 0, worker_init_fn: Optional[_worker_init_fn_t] = None,
                 multiprocessing_context=None, generator=None,
                 *, prefetch_factor: int = 2,
                 persistent_workers: bool = False,
                 pin_memory_device: str = ""):
    #只列出参数表,以下详细内容不再列出

dataset:以Dataset类为父类的自定义类的实例化对象

batch_size:批处理的个数

shuffle:bool类型,若为True则表示提前打乱数据

num_workers:加载数据时用到的线程数

drop_last :bool类型,若为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个训练集只有100个样本,那么训练的时候后面的36个就被扔掉了。如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。

timeout:如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0,默认为0

3.2.2 示例

import torch
from torch.utils.data import Dataset,DataLoader
import chardet
gpu = torch.device("cuda")
cpu="cpu"
try:
    SMSData_path="SMSSpamCollection"
    #获取文件编码方式
    with open(SMSData_path,"rb") as file:
        file_format=chardet.detect(file.read())["encoding"]
      
    class SMSData(Dataset):
        def __init__(self):
            self.data=open(SMSData_path,"r",encoding=file_format).readlines()
  
        def __getitem__(self, index):
            current_line=self.data[index].strip()
            origin=current_line[:4].strip()
            content=current_line[4:].strip()
            return [origin,content]
  
        def __len__(self):
            return len(self.data)
  
    SMSex=SMSData()
    SMSData_loader=DataLoader(dataset=SMSex,batch_size=2,shuffle=False,num_workers=2)
    if __name__=='__main__':#如果设置多线程,一定要加这句话,否则会报错
        for i in SMSData_loader:
            print("遍历一:",i)
            break
        for i in enumerate(SMSData_loader):
            print("遍历二:",i)
            break
        for batch_index,(label,content) in enumerate(SMSData_loader):
            print("遍历三:",batch_index,label,content)
            break
          
          
except BaseException as error:
    print(error)

输出

遍历一: [('ham', 'ham'), ('Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...', 'Ok lar... Joking wif u oni...')]
遍历二: (0, [('ham', 'ham'), ('Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...', 'Ok lar... Joking wif u oni...')])
遍历三: 0 ('ham', 'ham') ('Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...', 'Ok lar... Joking wif u oni...')
  • 可见,DataLoader是一个可遍历对象,每轮中返回的数据以列表的方式存储,且列表中每个元素都是一个元组,列表的长度等于Dataset._\_getitem__返回的列表长度,元组的长度等于batch_size参数的大小

4.图像处理:手写数字识别

4.1 torchvision模块

4.1.1 transforms.ToTensor类(仿函数)

class ToTensor:
    def __init__(self) -> None:
        _log_api_usage_once(self)
  • 将原始的PILImage数据类型或者numpy.array数据类型化为tensor数据类型。
  • 如果 PIL Image 属于 (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)中的一种图像类型,或者 numpy.ndarray 格式数据类型是 np.uint8 ,则将 [0, 255] 的数据转为 [0.0, 1.0] ,也就是说将所有数据除以 255 进行归一化。

4.1.2 transforms.Normalize类(仿函数)

class Normalize(torch.nn.Module):
    def __init__(self, mean, std, inplace=False):
        super().__init__()
        _log_api_usage_once(self)
        self.mean = mean
        self.std = std
        self.inplace = inplace

mean:数据类型为元组,元组的长度取决于通道数

std:数据类型为元组,元组的长度取决于通道数

  • 此函数可以将tensor进行标准化,使其在每个通道上都转化为均值为mean,标准差为std的高斯分布。

4.1.3 transforms.Compose类(仿函数)

class Compose:
    def __init__(self, transforms):
        if not torch.jit.is_scripting() and not torch.jit.is_tracing():
            _log_api_usage_once(self)
        self.transforms = transforms

transforms:数据类型为列表,列表中每个元素都是transforms模块中的一个类,如ToTensor和Normalize(隐式构造)。

  • 此函数可以将许多transforms类结合起来同时使用。

4.1.4 示例

import torchvision
if __name__ == '__main__':
    MNIST=torchvision.datasets.MNIST(root="./data",train=True,download=False,transform=None)
    MNIST_normalize=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0),(1))])(MNIST[0][0])
    print(MNIST_normalize)

4.2 网络构建

4.2.1 激活函数大全

在这里插入图片描述

  • 在pytorch中已经实现了上述很多的激活函数,下面我们将使用ReLU激活函数进行网络构建。

4.2.2 演示代码(在gpu上)

import torchvision
import torch
from torch.utils.data import DataLoader
from torch import nn
from torch import optim
from torch.nn import functional as Activate
from matplotlib import pyplot

# 定义所用网络
class ExNet(nn.Module):
    def __init__(self):
        # super函数调用
        super(ExNet, self).__init__()

        # 卷积层1
        self.conv1 = nn.Conv2d(1, 15, 5)
        '''
        输入通道数1,输出通道数15,核的大小5,输入必须为1,输出可以自定义
        '''
        # 卷积层2
        self.conv2 = nn.Conv2d(15, 30, 3)
        '''
        输入通道数15,输出通道数30,核的大小3,输入必须与上层的输出一致,输出可以自定义
        '''

        # 全连接层1
        self.fully_connected_1 = nn.Linear(30 * 10 * 10, 40)
        '''
        MNIST原始图像是1*28*28,输入为batch_size*1*28*28,经过卷积层1后,变为batch_size*15*24*24
        经过池化层后,变为batch_size*15*12*12
        经过卷积层2后,变为batch_size*30*10*10
        这个全连接层的第一层输入个数就是这么来的
        '''

        # 全连接层2
        self.fully_connected_2 = nn.Linear(40, 10)
        '''
        输入与上层保持一致
        由于要鉴别十个数字,因此输出层的神经元个数必须是10
        '''

    # 定义前向传播
    def forward(self, x):
        in_size = x.size(0)  # 在本例中in_size,也就是BATCH_SIZE的值。输入的x可以看成是batch_size*1*28*28的张量。

        # 卷积层1
        out = self.conv1(x)  # batch*1*28*28 -> batch*15*24*24
        out = Activate.relu(out)  # 调用ReLU激活函数

        # 池化层
        out = Activate.max_pool2d(out, 2, 2)  # batch*15*24*24 -> batch*15*12*12(2*2的池化层会减半)

        # 卷积层2
        out = self.conv2(out)  # batch*15*12*12 -> batch*30*10*10
        out = Activate.relu(out)  # 调用ReLU激活函数

        # flatten处理
        out = out.view(in_size, -1)

        # 全连接层1
        out = self.fully_connected_1(out)
        out = Activate.relu(out)

        # 全连接层2
        out = self.fully_connected_2(out)

        # 归一化处理,以便进行交叉熵代价函数的运算
        out = Activate.log_softmax(out, dim=1)

        return out

# 开始训练
def train(the_model, the_device, train_loader, the_optimizer, the_epoch):
  
    # 模型相关设置
    the_model=the_model.to(device=the_device)
    the_model.train(mode=True)

    # 用来绘制图像的变量
    list_times = []
    list_cost = []

    # 每轮循环
    for batch_idx, (data, target) in enumerate(train_loader):

        # 转移到指定设备上计算
        data = data.to(the_device);target = target.to(the_device)

        # 优化器参数重置
        the_optimizer.zero_grad()
      
        # 向前计算
        output = the_model.forward(data)
      
        # 计算误差
        cost = Activate.nll_loss(output, target)
      
        # 反向传播
        cost.backward()
      
        # 参数更新
        the_optimizer.step()
      
        # 打印信息
        if batch_idx % 10 == 0:

            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                the_epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), cost.item()))
            print(batch_idx, cost.item())

            list_times.append(batch_idx)
            list_cost.append(cost.item())

    # 绘制图像
    pyplot.scatter(list_times, list_cost)
    pyplot.savefig("costImage.jpg")
    pyplot.show()

    return


def test(the_model, the_device, the_test_loader):
  
    # 设置训练模式
    the_model=the_model.to(device=the_device)
    the_model.eval()

    # 测试的结果集
    acc_vector = []
    cost_vector = []
  
    #开始测试
    with torch.no_grad():
        for index, (data, target) in enumerate(the_test_loader):
          
            # 转移到指定设备上计算
            data = data.to(the_device);target = target.to(the_device)

            # 向前计算
            output = the_model.forward(data)
          
            # 计算误差
            cost = Activate.nll_loss(output, target)
            cost_vector.append(cost)

            pred = output.max(dim=1)[-1]  # output的尺寸是[batch_size,10],对每行取最大值,返回索引编号,即代表模型预测手写数字的结果
            cur_acc = pred.eq(target).float().mean()  # 均值代表每组batch_size中查准率
            acc_vector.append(cur_acc)

    # 打印结果
    print("平均查准率:{}".format(sum(acc_vector)/len(acc_vector)))
    print("average cost:{}".format(sum(cost_vector)/len(cost_vector)))
    return


if __name__ == '__main__':
    gpu = torch.device("cuda")
    cpu = "cpu"

    # 准备数据
    transAndNorm = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
                                                   torchvision.transforms.Normalize((0), (1))])
    MNISTData = torchvision.datasets.MNIST(root="./data", train=True, download=False, transform=transAndNorm)
    MNISTtest = torchvision.datasets.MNIST(root="./data", train=False, download=False, transform=transAndNorm)
    MNISTData_loader = DataLoader(dataset=MNISTData, batch_size=10, shuffle=True)
    MNISTtest_loader = DataLoader(dataset=MNISTtest, batch_size=10, shuffle=True)

    # 实例化网络和优化器
    MNISTnet_Ex = ExNet()
    MNIST_optimizer = optim.Adam(MNISTnet_Ex.parameters(), lr=0.001)  # lr(learning rate)是学习率

    for i in range(1,2):
        train(the_model=MNISTnet_Ex, the_device=gpu, train_loader=MNISTData_loader, the_optimizer=MNIST_optimizer, the_epoch=i)
        test(the_model=MNISTnet_Ex, the_device=gpu, the_test_loader=MNISTtest_loader)

输出

平均查准率:0.9804015159606934
average cost:0.061943911015987396

散点图
在这里插入图片描述

5.制作图片数据集(以flower102为例)

在刚刚的MNIST手写数字识别分类任务中,我们使用的数据集是pytorch官方内置的图片数据集。现在,我们要从零开始,尝试制作我们自己的数据集。

Oxford 102 Flower 是一个图像分类数据集,由 102 个花卉类别组成。被选为英国常见花卉的花卉。每个类别由 40 到 258 张图像组成。图像具有大尺度、姿势和光线变化。此外,还有一些类别在类别内有很大的变化,还有几个非常相似的类别。这里是flower102数据集的下载地址。解压后的文件目录如下:
在这里插入图片描述

5.1 建立数据集骨架

如第三章一样建立即可,如下:

import torch
from torch.utils.data import Dataset
import os
gpu = torch.device("cuda")
cpu = "cpu"
class flower102(Dataset):
    def __init__(self,root,resize,mode):
        super(flower102,self).__init__()
        pass

    def __len__(self):
        pass

    def __getitem__(self, item):
        pass

5.2 建立从名称到数字标签的映射

在这里插入图片描述
在训练集中,这102种花的类别名称如上图所示(我这里是经过重命名的),我们定义名称flower1数字标签1,这样我们就建立了一个映射。接下来,稍微修改一下构造函数,就可以实现全部的映射。如下:

import csv
import glob
import random
import os
from PIL import Image

import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms

gpu = torch.device("cuda")
cpu = "cpu"

class flower102(Dataset):
    def __init__(self, root, resize, mode):
        super(flower102, self).__init__()

        self.root = root
        self.train_root = os.path.join(self.root, "train")
        self.val_root = os.path.join(self.root, "valid")
        self.test_root = os.path.join(self.root, "test")

        self.resize = resize
        self.mode = mode

        self.mean = [0.485, 0.456, 0.406]
        self.std = [0.229, 0.224, 0.225]

        self.cat2label = {}  # 创建一个空字典,用于存储映射关系。
        for name in sorted(os.listdir(os.path.join(self.train_root))):  # 遍历训练集目录下的文件和文件夹,并按照名称排序。
            if not os.path.isdir(os.path.join(self.train_root, name)):  # 如果遍历到的是文件而不是文件夹,则跳过该项继续遍历下一项。
                continue
            elif not (name in self.cat2label):
                self.cat2label[name] = len(self.cat2label.keys())  # 将文件夹名称与类别标签对应,类别标签为字典长度(每次循环增加1)。
        print(self.cat2label)  # 打印映射关系字典。

    def __len__(self):
           pass

    def __getitem__(self, idx):
        pass

# 创建数据集实例
db = flower102(r"D:\Desktop\Datasets\flower102\dataset", resize=224, mode="train")

结果如下:

{'flower1': 0, 'flower10': 1, 'flower100': 2, 'flower101': 3, 'flower102': 4, 'flower11': 5, 'flower12': 6, 'flower13': 7, 'flower14': 8, 'flower15': 9, 'flower16': 10, 'flower17': 11, 'flower18': 12, 'flower19': 13, 'flower2': 14, 'flower20': 15, 'flower21': 16, 'flower22': 17, 'flower23': 18, 'flower24': 19, 'flower25': 20, 'flower26': 21, 'flower27': 22, 'flower28': 23, 'flower29': 24, 'flower3': 25, 'flower30': 26, 'flower31': 27, 'flower32': 28, 'flower33': 29, 'flower34': 30, 'flower35': 31, 'flower36': 32, 'flower37': 33, 'flower38': 34, 'flower39': 35, 'flower4': 36, 'flower40': 37, 'flower41': 38, 'flower42': 39, 'flower43': 40, 'flower44': 41, 'flower45': 42, 'flower46': 43, 'flower47': 44, 'flower48': 45, 'flower49': 46, 'flower5': 47, 'flower50': 48, 'flower51': 49, 'flower52': 50, 'flower53': 51, 'flower54': 52, 'flower55': 53, 'flower56': 54, 'flower57': 55, 'flower58': 56, 'flower59': 57, 'flower6': 58, 'flower60': 59, 'flower61': 60, 'flower62': 61, 'flower63': 62, 'flower64': 63, 'flower65': 64, 'flower66': 65, 'flower67': 66, 'flower68': 67, 'flower69': 68, 'flower7': 69, 'flower70': 70, 'flower71': 71, 'flower72': 72, 'flower73': 73, 'flower74': 74, 'flower75': 75, 'flower76': 76, 'flower77': 77, 'flower78': 78, 'flower79': 79, 'flower8': 80, 'flower80': 81, 'flower81': 82, 'flower82': 83, 'flower83': 84, 'flower84': 85, 'flower85': 86, 'flower86': 87, 'flower87': 88, 'flower88': 89, 'flower89': 90, 'flower9': 91, 'flower90': 92, 'flower91': 93, 'flower92': 94, 'flower93': 95, 'flower94': 96, 'flower95': 97, 'flower96': 98, 'flower97': 99, 'flower98': 100, 'flower99': 101}

5.3 建立csv数据

在建立了从名称到数字标签的映射后,我们希望有一个csv文件,里面存储了所有的图片路径及其数字标签,接下来,我们将定义一个load_csv函数去完成这件事,如下:

import csv
import glob
import random
import os
from PIL import Image

import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms

gpu = torch.device("cuda")
cpu = "cpu"

class flower102(Dataset):
    def __init__(self, root, resize, mode):
        super(flower102, self).__init__()

        self.root = root
        self.train_root = os.path.join(self.root, "train")
        self.val_root = os.path.join(self.root, "valid")
        self.test_root = os.path.join(self.root, "test")

        self.resize = resize
        self.mode = mode

        self.mean = [0.485, 0.456, 0.406]
        self.std = [0.229, 0.224, 0.225]

        self.cat2label = {}  # 创建一个空字典,用于存储映射关系。
        for name in sorted(os.listdir(os.path.join(self.train_root))):  # 遍历训练集目录下的文件和文件夹,并按照名称排序。
            if not os.path.isdir(os.path.join(self.train_root, name)):  # 如果遍历到的是文件而不是文件夹,则跳过该项继续遍历下一项。
                continue
            elif not (name in self.cat2label):
                self.cat2label[name] = len(self.cat2label.keys())  # 将文件夹名称与类别标签对应,类别标签为字典长度(每次循环增加1)。
        print(self.cat2label)  # 打印映射关系字典。

        if mode == "train":
            self.images, self.labels = self.load_csv("images_train.csv")
        elif mode == "valid":
            self.images, self.labels = self.load_csv("images_valid.csv")
        else:
            raise Exception("invalid mode!", self.mode)

    # 加载CSV文件并返回图像路径和标签列表
    def load_csv(self, filename):
        # 如果CSV文件不存在,则根据训练集目录和映射关系生成CSV文件
        if not os.path.exists(os.path.join(self.root, filename)):
            images = []
            for name in self.cat2label.keys():
                images += glob.glob(os.path.join(self.root, self.mode, name, "*.png"))
                images += glob.glob(os.path.join(self.root, self.mode, name, "*.jpg"))
                images += glob.glob(os.path.join(self.root, self.mode, name, "*.jpeg"))

            random.shuffle(images)
            with open(os.path.join(self.root, filename), mode="w", newline="") as f:
                writer = csv.writer(f)
                for img in images:
                    label = self.cat2label[img.split(os.sep)[-2]]
                    writer.writerow([img, label])
                print("written into csv file:", filename)

        # 从CSV文件中读取图像路径和标签
        images = []
        labels = []
        with open(os.path.join(self.root, filename)) as f:
            reader = csv.reader(f)
            for row in reader:
                img, label = row
                label = int(label)

                images.append(img)
                labels.append(label)

        assert len(images) == len(labels)

        return images, labels

    # 反归一化
    def denormalize(self, x_hat):
        pass

    def __len__(self):
        pass

    def __getitem__(self, idx):
        pass

# 创建数据集实例
db = flower102(r"D:\Desktop\Datasets\flower102\dataset", resize=224, mode="train")

然后,我们获得了一个如下的csv文件:
在这里插入图片描述

5.4 完善成员函数和transform过程

在完成了load_csv函数后,这个数据集基本制作完成,接下来只需要完善__len__函数和__getitem__函数,并定义transform过程即可。

import csv
import glob
import random
import os
from PIL import Image

import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms

gpu = torch.device("cuda")
cpu = "cpu"

class flower102(Dataset):
    def __init__(self, root, resize, mode):
        super(flower102, self).__init__()

        self.root = root
        self.train_root = os.path.join(self.root, "train")
        self.val_root = os.path.join(self.root, "valid")
        self.test_root = os.path.join(self.root, "test")

        self.resize = resize
        self.mode = mode

        self.mean = [0.485, 0.456, 0.406]
        self.std = [0.229, 0.224, 0.225]

        self.cat2label = {}  # 创建一个空字典,用于存储映射关系。
        for name in sorted(os.listdir(os.path.join(self.train_root))):  # 遍历训练集目录下的文件和文件夹,并按照名称排序。
            if not os.path.isdir(os.path.join(self.train_root, name)):  # 如果遍历到的是文件而不是文件夹,则跳过该项继续遍历下一项。
                continue
            elif not (name in self.cat2label):
                self.cat2label[name] = len(self.cat2label.keys())  # 将文件夹名称与类别标签对应,类别标签为字典长度(每次循环增加1)。
        print(self.cat2label)  # 打印映射关系字典。

        if mode == "train":
            self.images, self.labels = self.load_csv("images_train.csv")
        elif mode == "valid":
            self.images, self.labels = self.load_csv("images_valid.csv")
        else:
            raise Exception("invalid mode!", self.mode)

    # 加载CSV文件并返回图像路径和标签列表
    def load_csv(self, filename):
        # 如果CSV文件不存在,则根据训练集目录和映射关系生成CSV文件
        if not os.path.exists(os.path.join(self.root, filename)):
            images = []
            for name in self.cat2label.keys():
                images += glob.glob(os.path.join(self.root, self.mode, name, "*.png"))
                images += glob.glob(os.path.join(self.root, self.mode, name, "*.jpg"))
                images += glob.glob(os.path.join(self.root, self.mode, name, "*.jpeg"))

            random.shuffle(images)
            with open(os.path.join(self.root, filename), mode="w", newline="") as f:
                writer = csv.writer(f)
                for img in images:
                    label = self.cat2label[img.split(os.sep)[-2]]
                    writer.writerow([img, label])
                print("written into csv file:", filename)

        # 从CSV文件中读取图像路径和标签
        images = []
        labels = []
        with open(os.path.join(self.root, filename)) as f:
            reader = csv.reader(f)
            for row in reader:
                img, label = row
                label = int(label)

                images.append(img)
                labels.append(label)

        assert len(images) == len(labels)

        return images, labels

    # 反归一化
    def denormalize(self, x_hat):

        # x_hat = (x - mean) / std
        # x = x_hat * std + mean
        # x.size(): [c, h, w]
        # mean.size(): [3] => [3, 1, 1]
        mean = torch.tensor(self.mean).unsqueeze(1).unsqueeze(1)
        std = torch.tensor(self.std).unsqueeze(1).unsqueeze(1)
        x = x_hat * std + mean
        return x

    def __len__(self):
        # 返回数据集中样本的数量
        return len(self.images)

    def __getitem__(self, idx):
        # 根据索引获取图像和标签
        img, label = self.images[idx], self.labels[idx]

        # 定义数据的预处理操作
        tf = transforms.Compose([
            lambda x: Image.open(x).convert("RGB"),  # 以RGB格式打开图像
            transforms.Resize((int(self.resize * 1.25), int(self.resize * 1.25))),  # 调整图像大小为resize的1.25倍
            transforms.RandomRotation(15),  # 随机旋转图像(最大旋转角度为15度)
            transforms.CenterCrop(self.resize),  # 将图像中心裁剪为resize大小
            transforms.ToTensor(),  # 将图像转换为Tensor类型
            transforms.Normalize(mean=self.mean, std=self.std),  # 归一化图像
        ])

        # 对图像进行预处理操作
        img = tf(img)
        label = torch.tensor(label)

        return img, label

# 创建数据集实例
db = flower102(r"D:\Desktop\Datasets\flower102\dataset", resize=224, mode="train")

5.5 DataLoader检验

if __name__=='__main__' :
    loader = DataLoader(dataset=db, shuffle=True,num_workers=1,batch_size=8)

    import matplotlib.pyplot as plt

    data,target=next(iter(db))
    print(data.shape)

    plt.imshow(transforms.ToPILImage()(db.denormalize(data)))
    plt.show()

成功显示:
在这里插入图片描述

6.迁移学习

6.1 现有模型的保存和加载

6.1.1 保存(torch.save函数)

我们要保存的是:

  • 实例化的网络的数据
  • 实例化的优化器的数据
def save(
    obj: object,
    f: FILE_LIKE,
    pickle_module: Any = pickle,
    pickle_protocol: int = DEFAULT_PROTOCOL,
    _use_new_zipfile_serialization: bool = True
) -> None:...
  • 我们只需要把string类型的文件名作为参数输入即可
把数据加载进网络
  • Module.load_state_dict函数,我们只需要用torch.load函数的返回值作为参数即可
把数据加载进优化器
  • optim.load_state_dict函数,我们只需要用torch.load函数的返回值作为参数即可

6.1.3 示例

    torch.save(MNISTnet_Ex.state_dict(),"MNIST.pt")
    torch.save(optimzer.state_dict(),"optimizer.pt")
    MNISTnet_Ex.load_state_dict(torch.load("MNIST.pt"))
    optimzer.load_state_dict(torch.load("optimizer.pt"))

6.2 使用预训练的模型(以resnet50为例)

pytoch官方提供了不少与训练的模型可供使用,如下:

model
AlexNet
ConvNeXt
DenseNet
EfficientNet
EfficientNetV2
GoogLeNet
Inception V3
MaxVit
MNASNet
MobileNet V2
MobileNet V3
RegNet
ResNet
ResNeXt
ShuffleNet V2
SqueezeNet
SwinTransformer
VGG
VisionTransformer
Wide ResNet

关于这些模型的详细用途,可以自行前往pytorch官网查阅相关资料,具体原理本文不再涉及。

6.2.1 确定初始化参数

在使用预训练模型的过程中,最重要的一步是,确定这个预训练模型中哪些参数是需要训练的,哪些参数是不需要训练的,哪些参数是要修改的

首先,查看一下resnet50的网络结构:

import torchvision.models as models
print(models.resnet50(pretrained=True))
Resnet(
...
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)

看到最后一层是一个1000分类的全连接层,而我们第五章制作的数据集里,只需要102分类,因此,我们选择只修改最后一层的参数并训练。如下所示:

import torchvision.models as models
import torch.nn as nn

def set_parameter_requires_grad(model,need_train):
    if not need_train:
        for para in model.parameters():
            para.requires_grad = False
    return

def initalize_resnet50(num_classes,need_train=False,pretrained=True):
    trained_model=models.resnet50(pretrained=pretrained)
    input_size=224
    set_parameter_requires_grad(trained_model, need_train)
    trained_model.fc = nn.Sequential(
        nn.Linear(trained_model.fc.in_features, num_classes),
        nn.LogSoftmax(dim=1),
    )
    # trained_model.fc = nn.Sequential(
    #     nn.Linear(trained_model.fc.in_features, num_classes),
    #     nn.Flatten(),
    # )

    return trained_model,input_size

resnet50,input_size=initalize_resnet50(num_classes=102,need_train=False,pretrained=True)

6.3 开始训练

训练的流程和记录如第四章所示即可,如下:

import copy  # 导入copy模块,用于深拷贝对象
import os.path  # 导入os.path模块,用于操作文件路径
import time  # 导入time模块,用于计时

def train(model, dataLoader, criterion, optimzer, num_epoch, device, filename):
    """
    训练函数
  
    Args:
        model: 模型对象
        dataLoader: 数据加载器
        criterion: 损失函数
        optimzer: 优化器
        num_epoch: 迭代次数
        device: 计算设备
        filename: 保存模型的文件名
  
    Returns:
        model: 训练后的模型
        train_acc_history: 训练集准确率历史
        train_losses: 训练集损失历史
        l_rs: 优化器学习率历史
    """

    since = time.time()  # 获取当前时间
    best_epoch = {"epoch": -1,
                  "acc": 0
                  }  # 存储最佳模型的epoch和准确率

    model.to(device)  # 将模型移动到计算设备上

    train_acc_history = []  # 存储训练集准确率历史
    train_losses = []  # 存储训练集损失历史
    l_rs = [optimzer.param_groups[0]['lr']]  # 存储优化器学习率历史

    best_model_wts = copy.deepcopy(model.state_dict())  # 深拷贝当前模型的权重作为最佳模型权重

    for epoch in range(num_epoch):  # 迭代训练
        print("Epoch {}/{}".format(epoch, num_epoch - 1))
        print('*' * 10)

        running_loss = 0.0  # 初始化损失总和
        running_correct = 0.0  # 初始化正确预测的样本数总和

        for data, target in dataLoader:  # 遍历数据加载器中的每个批次
            data = data.to(device)  # 将输入数据移动到计算设备上
            target = target.to(device)  # 将目标数据移动到计算设备上

            optimzer.zero_grad()  # 清零梯度

            output = model.forward(data)  # 前向传播

            loss = criterion(output, target)  # 计算损失

            pred = output.argmax(dim=1)  # 获取预测结果

            loss.backward()  # 反向传播

            optimzer.step()  # 更新参数

            running_loss += loss.item() * data.size(0)  # 累加损失
            running_correct += torch.eq(pred, target).sum().float().item()  # 累加正确预测的样本数

        epoch_loss = running_loss / len(dataLoader.dataset)  # 计算平均损失
        epoch_acc = running_correct / len(dataLoader.dataset)  # 计算准确率

        time_elapsed = time.time() - since  # 计算训练时间
        print("Time elapsed {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60))
        print("Loss: {:4f} Acc:{:.4f}".format(epoch_loss, epoch_acc))

        train_acc_history.append(epoch_acc)  # 将准确率添加到历史列表中
        train_losses.append(epoch_loss)  # 将损失添加到历史列表中

        if (epoch_acc > best_epoch["acc"]):  # 更新最佳模型信息
            best_epoch = {
                "epoch": epoch,
                "acc": epoch_acc
            }
            best_model_wts = copy.deepcopy(model.state_dict())  # 深拷贝当前模型权重作为最佳模型权重
            state = {
                "state_dict": model.state_dict(),
                "best_acc": best_epoch["acc"],
                "optimzer": optimzer.state_dict(),
            }
            torch.save(state, filename)  # 保存最佳模型的状态字典到文件

        print("Optimzer learning rate : {:.7f}".format(optimzer.param_groups[0]['lr']))  # 打印当前优化器学习率
        l_rs.append(optimzer.param_groups[0]['lr'])  # 将当前优化器学习率添加到历史列表中
        print()

    time_elapsed = time.time() - since  # 计算总训练时间
    print("Training complete in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60))
    print("Best epoch:", best_epoch)

    model.load_state_dict(best_model_wts)  # 加载最佳模型权重

    return model, train_acc_history, train_losses, l_rs


if __name__ == "__main__":
    import torch
    import Net
    import torch.nn as nn
    import torch.optim as optim

    optimzer = optim.Adam(params=Net.resnet50.parameters(), lr=1e-2)  # 创建Adam优化器
    sche = optim.lr_scheduler.StepLR(optimizer=optimzer, step_size=10, gamma=0.5)  # 创建学习率调度器
    criterion = nn.NLLLoss()  # 创建负对数似然损失函数
    #criterion=nn.CrossEntropyLoss()

    import flower102
    from torch.utils.data import DataLoader

    db = flower102.flower102(r"D:\Desktop\Datasets\flower102\dataset", resize=Net.input_size, mode="train")  # 创建数据集对象
    loader = DataLoader(dataset=db, shuffle=True, num_workers=1, batch_size=5)  # 创建数据加载器

    model = Net.resnet50  # 创建模型对象
    filename = "checkpoint.pth"  # 模型保存文件名

    if os.path.exists(filename):  # 如果存在模型文件
        checkpoint = torch.load(filename)  # 加载模型状态字典
        model.load_state_dict(checkpoint["state_dict"])  # 加载模型权重

    model, train_acc_history, train_loss, LRS = train(model=model, dataLoader=loader, criterion=criterion,
                                                      optimzer=optimzer, num_epoch=5,
                                                      device=torch.device("cuda"), filename=filename)

下面是我训练5轮的结果:

Epoch0/4
**********
Time elapsed 0m 37s
Loss: 11.229704 Acc:0.3515
Optimzer learning rate : 0.0100000
Epoch1/4
**********
Time elapsed 1m 12s
Loss: 8.165128 Acc:0.5697
Optimzer learning rate : 0.0100000
Epoch2/4
**********
Time elapsed 2m 4s
Loss: 7.410833 Acc:0.6363
Optimzer learning rate : 0.0100000
Epoch3/4
**********
Time elapsed 2m 60s
Loss: 6.991850 Acc:0.6822
Optimzer learning rate : 0.0100000
Epoch4/4
**********
Time elapsed 3m 44s
Loss: 6.482804 Acc:0.7128
Optimzer learning rate : 0.0100000
Training complete in 3m 44s
Best epoch: {'epoch': 4, 'acc': 0.7127594627594628}
本文由博客一文多发平台 OpenWrite 发布!

UnderTurrets
6 声望4 粉丝