分布式架构的|国产智能分析工具
在银行交易中,20%的头部优质客户会给银行贡献80%的利润,而赢得一个新客户的成本是保留一个老客户的5至6倍。某大型国有银行在面临此类数据挖掘的业务时,使用的是SAS产品。由于SAS是集中式的,对单台服务器要求太高,算力无法支撑需求,且无法支持可视化的机器学习,对于业务人员来说使用门槛过高。
在经过产品选型后,决定采用星环科技的智能分析工具Sophon替换原有SAS,用以满足银行利用全量数据进行挖掘的需求。分布式的软件架构也在实战过程中证明了其海量的数据处理性能优势,逐渐取代了原有的集中式架构,完成了某大型国有银行所要求的海量数据挖掘任务。
- 在中高端客户流失预警模型构建方面,Sophon利用短期资产流失与长期资产流失的高关联性,通过逻辑回归模型提前找出中高端客户群中的近期潜在流失客户。
- 模型上线后,该银行实现了对单个客户按照流失率的评分,评估数据显示,在流失率评分最高的前10%客户当中,实际流失的比例达到了20.2%,相较全量数据5.9%的流失率来说,流失率预测效率提升了242%,前10%客户的覆盖度为34.2%。
- 一方面大量节约了检索和咨询成本,另一方面也增加了产品和服务购买的转化率。相较于专家经验排序模型,基于产品推荐的成功率提升了4到10倍。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。