Advanced RAG 08:使用 Self-RAG 打造高质量、可追溯的 RAG System

6 月 19 日
阅读 14 分钟
623
编者按: RAG 技术通过检索并利用外部知识源,能够较为有效地提升生成内容的准确性和多样性。然而,经典 RAG 流程也存在一些不足,例如不必要的检索会浪费计算资源,并可能引入无关内容或错误信息,影响生成质量。本文介绍了 Self-RAG 这一技术,通过引入 Reflection Tokens,语言模型能够根据具体需求动态决定是否检索...
封面图

Netflix 机器学习科学家的提示词优化经验分享

6 月 15 日
阅读 4 分钟
522
编者按: 如何充分发挥大模型的潜能,用好大模型,关键在于如何优化向它们发送的提示词(prompt),是为提示词工程(prompt engineering)。本文Netflix 机器学习科学家Cameron R. Wolfe的提示词优化经验分享,阐述了目前提示词的主要构成要素,介绍了与提示词相关的上下文窗口相关信息,并总结了一些行之有效的优化策略...
封面图

提升 LLMs 效率,降低使用成本:一种减少 Tokens 消耗的实战策略

6 月 12 日
阅读 7 分钟
831
编者按: LLMs 被视为 AI 领域的一个里程碑式的突破,但要将其应用于实际生产环境,并且还能用对、用好并非易事。模型的使用成本和响应延迟是目前将大语言模型(LLMs)应用于生产环境中的核心难题之一。在本期刊载的这篇文章中,作者从自身项目的实践经验出发,分享了一系列实用技巧,帮助优化 LLM Prompt ,能够一定程...
封面图

Next-Level Agents:释放动态上下文(Dynamic Context)的巨大潜力

6 月 5 日
阅读 9 分钟
593
编者按: 本文深入探讨了如何通过优化动态上下文信息(Dynamic Context)来提升 AI Agents 的工作效率和准确性。文章首先概述了五种常见的技术策略,包括信息标识(Message Labeling)、针对不同需求设定不同上下文、优化系统提示词(System Prompts)、精简 RAG 系统中冗余信息,以及其他处理上下文的高级策略。随后,作者...
封面图

探索 LLMs 在数据标注中的应用潜力:观察、思考与前景展望

5 月 31 日
阅读 7 分钟
519
编者按: 目前,LLMs 在机器翻译、文本生成、多轮问答等任务上已表现得非常出色了。人们开始思考它们是否也可以用于数据标注工作。数据标注是训练和评估各种机器学习模型的基础,一直是一项昂贵且耗时的工作。是否能够借助 LLMs 的强大能力来为数据标注流程降本增效呢?本文深入探讨了这一问题。本文作者从业界最新研究...
封面图

一种人机协作新范式?为每个人准备的 AI Agents “羊皮卷”

5 月 29 日
阅读 5 分钟
449
编者按: 当前大热的大语言模型和检索增强生成模型,虽然在语言理解和内容生成方面取得了突破性的进展,但仍然存在诸多限制。它们缺乏根据目标导引行为、持续学习和与环境交互的能力,难以应对复杂多变的现实场景需求。今天为大家带来的这篇文章,作者的观点是人工智能领域正朝着开发更智能、更自主的 AI Agent 系统迈进...
封面图

让 LLMs 学会使用工具 | 函数调用(Function Calling)技术实例探索

5 月 23 日
阅读 16 分钟
3.9k
编者按: 大语言模型拥有令人惊叹的语言理解和生成能力,却也存在自主决策、与外部系统交互等方面的不足。函数调用(Function Calling)技术的出现,正是为解决这一难题而生的创新方案,它赋予了大语言模型更强的自主能力和与外部世界连接的能力,成为实现真正智能自主 Agent 的关键一环。本期我们精心为各位读者伙伴呈...
封面图

Advanced RAG 07:在RAG系统中进行表格数据处理的新思路

5 月 15 日
阅读 24 分钟
2.6k
编者按: 目前,检索增强生成(RAG)系统成为了将海量知识赋能于大模型的关键技术之一。然而,如何高效地处理半结构化和非结构化数据,尤其是文档中的表格数据,仍然是 RAG 系统面临的一大难题。本文作者针对这一痛点,提出了一种处理表格数据的新颖解决方案。作者首先系统性地梳理了RAG系统中表格处理的核心技术,包括表...
封面图

应该将大语言模型(LLMs)视为一种面向词语的计算器?

5 月 11 日
阅读 5 分钟
265
编者按:当前,大语言模型已经成为自然语言处理领域的热点。LLMs 是否真的“智能”?它们又为我们带来了哪些启发?针对这些问题,Darveen Vijayan 为我们带来了这篇引人深思的文章。作者主要阐释了两个观点:第一,LLMs应被视为一种文字计算器,它通过预测下一个词来工作,当前阶段还不应被归为“智能”。第二,尽管LLMs 目...

解构复合人工智能系统(Compound AI Systems):关键术语、理论、思路、实践经验

5 月 10 日
阅读 15 分钟
648
编者按: 大模型的出现为构建更智能、更复杂的人工智能系统带来了新的契机。然而,单一的大模型难以应对现实世界中错综复杂的问题,需要与其他模块相结合,构建出复合人工智能系统(Compound AI Systems)。本文作者深耕人工智能领域多年,洞见独到。文中系统性地介绍了四种常见的 Compound AI Systems 部署模式:RAG 系...
封面图

Advanced RAG 06:生成结果的相关性低? 快用 Query Rewriting 优化技术

5 月 7 日
阅读 25 分钟
1.4k
编者按:在现实生活中,普通用户很难编写合适的提示词(prompt)来指示 LLM 完成期望任务。用户提出的 queries 往往存在词汇不准确、缺乏语义信息等问题,导致 LLM 难以理解并生成相关的模型响应。因此,如何优化 queries ,增强 LLM 对各类 query 信息的精准理解能力,是当前亟待攻克的重要课题。本文将探讨一些主流 Qu...
封面图

Advanced RAG 05:探讨基于文本内在语义信息的数据分块方法

4 月 30 日
阅读 21 分钟
1.9k
编者按:在 RAG (Retrieval Augmented Generation) 系统中,将文本数据高效地划分成相对独立且富有语义信息的数据块(chunks)是一项较为关键的任务。基于规则的传统数据分块方法存在一些问题,因此探讨基于文本内在语义信息的数据分块方法非常必要。在这篇文章中,作者深入探讨了三种基于文本内在语义信息的数据分块方...
封面图

提示词优化的自动化探索:Automated Prompt Engineering

4 月 25 日
阅读 11 分钟
602
编者按: 作者在尝试教授母亲使用 LLM 完成工作任务时,意识到提示词的优化并不像想象中简单。提示词的自动优化对于经验并不丰富的提示词撰写者很有价值,他们没有足够的经验去调整和改进提供给模型的提示词,这引发了对自动化提示词优化工具的进一步探索。本文作者从两个角度分析了提示词工程的本质 —— 可将其视为超参...
封面图

Advanced RAG 04:重排序(Re-ranking)技术探讨

4 月 20 日
阅读 15 分钟
816
编者按:重排序(Re-ranking)技术在检索增强生成(Retrieval Augmented Generation,RAG)系统中扮演着关键角色。通过对检索到的上下文进行筛选和排序,可以提高 RAG 系统的有效性和准确性,为最终的结果生成提供更精准的信息。本文介绍了两种主要的 Re-ranking 方法,并演示了如何将其融入到 RAG 系统中,提高系统性能...
封面图

Advanced RAG 03:运用 RAGAs 与 LlamaIndex 评估 RAG 应用

4 月 17 日
阅读 11 分钟
1.5k
编者按:目前,检索增强生成(Retrieval Augmented Generation,RAG)技术已经广泛使用于各种大模型应用场景。然而,如何准确评估 RAG 系统的性能和效果,一直是业界和学界共同关注的重点问题。若无法对 RAG 系统进行全面、客观的评估,也难以针对性地优化和改进它。因此,开发一套科学、可靠的 RAG 系统评估指标体系,...
封面图

LLM 推理优化探微 (4) :模型性能瓶颈分类及优化策略

4 月 11 日
阅读 11 分钟
953
编者按: 在人工智能浪潮袭卷全球的大背景下,进一步提升人工智能模型性能,满足更多应用需求已经刻不容缓。如何优化模型延迟和吞吐量,成为了业界亟待解决的重要问题。我们今天为大家带来的这篇文章,其观点为:不同的性能瓶颈需要采取不同的优化策略,识别并解决主要的性能瓶颈是提升模型性能的关键。文章指出,主要有...
封面图

Advanced RAG 02:揭开 PDF 文档解析的神秘面纱

4 月 7 日
阅读 16 分钟
837
编者按: 自 2023 年以来,RAG 已成为基于 LLM 的人工智能系统中应用最为广泛的架构之一。由于诸多产品的关键功能(如:领域智能问答、知识库构建等)严重依赖RAG,优化其性能、提高检索效率和准确性迫在眉睫,成为当前 RAG 相关研究的核心问题。如何高效准确地从PDF等非结构化数据中提取信息并加以利用,是其中一个亟待...
封面图

Advanced RAG 01:讨论未经优化的 RAG 系统存在的问题与挑战

4 月 3 日
阅读 3 分钟
632
编者按: 自 2023 年以来,RAG 已成为基于 LLM 的人工智能系统中应用最为广泛的架构之一。由于诸多产品的关键功能严重依赖RAG,优化其性能、提高检索效率和准确性迫在眉睫,成为当前 RAG 相关研究的核心问题。我们今天为大家带来的这篇文章指出,Naive RAG 在编制索引、检索和内容生成这三个核心步骤中都存在诸多问题:a...
封面图

LoRA 及其衍生技术总览:An Overview of the LoRA Family

3 月 30 日
阅读 11 分钟
856
编者按: 对于大语言模型的微调训练来说,传统的全参数微调方法需要处理数百万甚至数十亿级别的参数,计算量和显存占用都非常大。而 LoRA 这种技术方案,通过引入少量的可训练矩阵来调整预训练模型的行为,极大降低了训练所需的计算资源,是近年来大语言模型微调的一个重大突破。我们今天为大家带来的文章,介绍了众多具...
封面图

发掘非结构化数据价值:AI 在文档理解领域的现状与未来

3 月 28 日
阅读 5 分钟
471
编者按: 在当今这个由数据主导的时代,我们被海量多样的信息所环绕,但大部分数据都以非结构化的形式存在,诸如文档、电子邮件、合同等,这使得从中提取有价值的信息成为一大挑战。幸运的是,AI 领域正在悄然孕育一场革命性变革,它将帮助我们攻克长期以来困扰非结构化数据处理的种种困难。这篇文章首先解释了文档理解...
封面图

Mistral AI vs. Meta:两大 Top 开源模型的对比

3 月 20 日
阅读 16 分钟
556
编者按: 随着大模型的不断升级和参数量的持续扩大,越来越多人开始重视大模型存在的硬件资源要求高、碳排放量较大等问题。如何在保持模型性能的同时,降低计算成本和资源消耗,成为了业界一个迫切需要解决的问题。我们今天为大家带来的这篇文章,作者认为 Mistral AI 提出的一系列创新技术方案为解决这一问题提供了新思...
封面图

生成式 AI 术语指南:带有配图说明,没有数学公式

3 月 15 日
阅读 11 分钟
522
编者按: 生成式人工智能技术的发展日新月异,这一领域涉及到了越来越多的专业术语和概念。对于刚接触这一领域的新手来说,理解这些术语算是一个门槛。我们有必要整理和解释这些术语,帮助更多人快速入门,投身 AI 事业。文章首先将这些生成式 AI 术语分为11大类,包括Types of Models、Common LLM Terms、LLM Lifecycle...
封面图

LLM 推理优化探微 (3) :如何有效控制 KV 缓存的内存占用,优化推理速度?

3 月 9 日
阅读 12 分钟
1.8k
编者按: 随着 LLM 赋能越来越多需要实时决策和响应的应用场景,以及用户体验不佳、成本过高、资源受限等问题的出现,大模型高效推理已成为一个重要的研究课题。为此,Baihai IDP 推出 Pierre Lienhart 的系列文章,从多个维度全面剖析 Transformer 大语言模型的推理过程,以期帮助读者对这个技术难点建立系统的理解,并...
封面图

LLM 推理优化探微 (2) :Transformer 模型 KV 缓存技术详解

3 月 6 日
阅读 7 分钟
2.6k
编者按:随着 LLM 赋能越来越多需要实时决策和响应的应用场景,以及用户体验不佳、成本过高、资源受限等问题的出现,大模型高效推理已成为一个重要的研究课题。为此,Baihai IDP 推出 Pierre Lienhart 的系列文章,从多个维度全面剖析 Transformer 大语言模型的推理过程,以期帮助读者对这个技术难点建立系统的理解,并...
封面图

化是渐化,变是顿变:一窥 OpenAI Sora 相关技术的演进

3 月 1 日
阅读 9 分钟
565
编者按: 近期,OpenAI 发布通用视觉大模型 Sora ,这也是继文本模型ChatGPT和图片模型Dall-E之后,又一极具颠覆性的大模型产品,人们重新思考了生成式 AI 在视觉内容创作领域的应用前景,内容创作工作流有望被颠覆。我们今天要为大家分享的这篇博文,作者认为 Sora 代表了Transformer、NaViT、扩散模型等一系列视觉AI技...
封面图

OpenAI Sora 关键技术详解:揭秘时空碎片 (Spacetime Patches) 技术

2 月 22 日
阅读 4 分钟
1.3k
编者按:近日,OpenAI发布其首个视频生成模型“Sora”,该模型生成的视频内容可以呈现出多个角色、特定动作以及复杂场景,为构建能够理解和模拟现实世界的人工智能模型奠定了基础。本文解析的重点即是 Sora 背后的核心技术 Spacetime Patches,作者认为该技术通过创新的时空数据建模方法,让 Sora 学会预测时空维度上事件...
封面图

LLM 模型融合实践指南:低成本构建高性能语言模型

2 月 21 日
阅读 12 分钟
1.8k
编者按:随着大语言模型技术的快速发展,模型融合成为一种低成本但高性能的模型构建新途径。本文作者 Maxime Labonne 利用 mergekit 库探索了四种模型融合方法:SLERP、TIES、DARE和passthrough。通过配置示例和案例分析,作者详细阐释了这些算法的原理及实践操作。作者的核心观点是:相比训练全新模型,融合现有模型可...
封面图

LoRA:语言模型微调的计算资源优化策略

2 月 5 日
阅读 7 分钟
835
编者按:随着数据量和计算能力的增加,大模型的参数量也在不断增加,同时进行大模型微调的成本也变得越来越高。全参数微调需要大量的计算资源和时间,且在进行切换下游任务时代价高昂。本文作者介绍了一种新方法 LoRA,可以在保持模型性能的同时大幅减少微调的参数量和所需资源。LoRA通过引入两个低秩适配矩阵,用矩阵乘...

LLM 推理优化探微 (1) :Transformer 解码器的推理过程详解

1 月 31 日
阅读 5 分钟
2.2k
编者按:随着 LLM 赋能越来越多需要实时决策和响应的应用场景,以及用户体验不佳、成本过高、资源受限等问题的出现,大模型高效推理已成为一个重要的研究课题。为此,Baihai IDP 推出 Pierre Lienhart 的系列文章,从多个维度全面剖析 Transformer 大语言模型的推理过程,以期帮助读者对这个技术难点建立系统的理解,并...
封面图

探讨 LLM 的潜在风险 (偏见与毒性等),是否存在解决之道?

1 月 25 日
阅读 13 分钟
1.3k
编者按:随着 GPT-4 等大语言模型(LLM)的蓬勃发展,人们开始关注它们在社会伦理、安全性和偏见等方面的表现。本文探讨了 LLM 在偏见、毒性和越狱方面的最新研究进展。作者的核心观点是,LLM 仍存在一定的偏见问题,但相关公司正在努力改进,LLM 的整体发展趋势是向好的。作者首先介绍了 OpenAI、Google 等公司采取的伦理...
封面图