编者按: 当前 AI 技术发展日新月异,多智能体框架如雨后春笋般涌现。如何在 AutoGen、LangGraph、CrewAI 等众多框架中做出正确选择,找出那一个真正适合你需求的多智能体框架?本文作者通过对五大多智能体 AI 框架的比较,提出了一个关键观点:不同的 AI 框架适用于不同的场景和需求,选择的关键在于精准匹配项目特点和...
编者按:想象一下,你正在开发一个 AI 助手,突然发现 system message 和用户提示词存在冲突,这时 AI 会听谁的?这种情况不仅困扰着开发者,还可能导致 AI 系统的不稳定和不可预测,影响用户体验和系统可靠性。本文作者通过一系列精心设计的实验,深入探讨了 GPT-4o 和 Claude-3.5 等顶尖大语言模型在面对 system messa...
编者按:传统的基于用户数量的定价模式是否还适用于AI产品?我们今天为大家带来的这篇文章中,作者提出:AI 产品应该采用基于工作量的定价模式,而非传统的基于用户数量的定价方式。传统的基于用户数量的定价模式在 AI 产品中往往会导致资源浪费和成本分配不均。一些员工可能每天都在大量使用 AI 工具,而另一些人可能几...
编者按: AI 能立即改变世界吗?为何巨额投资却难见成效?你是否也在思考:我们开发的 AI 产品真的解决了用户的需求吗?面对这些问题,许多公司陷入了困境:要么过于专注模型开发而忽视实际应用,要么盲目将 AI 融入产品而不考虑是否需要。这不仅导致资源浪费,更可能使我们错失 AI 真正的价值所在。本文深入剖析了 AI ...
编者按:目前 AI Agents 在各行各业的应用前景广阔,越来越多的企业开始尝试部署 AI Agents ,然而如何在企业生产环境中有效部署和管理 AI Agents,是工程师们面临的一大挑战。你是否曾面临这样的困惑:如何确保 AI Agents 在生产环境中稳定可靠地运行?如何应对突发的高并发请求?当 AI Agents 出现"幻觉"或系统崩溃时...
编者按: 你是否曾经遇到过这些情况:你向 AI 助手提出了一个比较复杂的问题,但它给出的回答却比较浅显,甚至完全偏离了你的意图🤔?或者,你询问了一个非常简单的问题, AI 助手却给出了一大堆不必要的信息,让你感到烦恼😣?传统的 RAG 技术虽然能有效减少 AI 回答内容中的错误,但并不能改进用户最初提交的 query 内容...