可视化CNN和特征图

2023-04-10
阅读 4 分钟
1.4k
卷积神经网络(cnn)是一种神经网络,通常用于图像分类、目标检测和其他计算机视觉任务。CNN的关键组件之一是特征图,它是通过对图像应用卷积滤波器生成的输入图像的表示。
封面图

7个最新的时间序列分析库介绍和代码示例

2023-04-08
阅读 6 分钟
1.8k
时间序列分析包括检查随着时间推移收集的数据点,目的是确定可以为未来预测提供信息的模式和趋势。我们已经介绍过很多个时间序列分析库了,但是随着时间推移,新的库和更新也在不断的出现,所以本文将分享8个目前比较常用的,用于处理时间序列问题的Python库。他们是tsfresh, autots, darts, atspy, kats, sktime, greyk...
封面图

常用的ControlNet以及如何在Stable Diffusion WebUI中使用

2023-04-07
阅读 5 分钟
9.5k
上一次我们已经介绍了如何通过代码的方式使用ControlNet,Stable Diffusion WebUI里面包含了很详细的使用设置,我们可以直接在上面进行操作,所以本文将介绍如何以傻瓜的方式直接使用ControlNet。

Pandas 2.0正式版发布: Pandas 1.5,Polars,Pandas 2.0 速度对比测试

2023-04-06
阅读 6 分钟
1.9k
Pandas 2.0正式版在4月3日已经发布了,以后我们pip install默认安装的就是2.0版了,Polars 是最近比较火的一个DataFrame 库,最近在kaggle上经常使用,所以这里我们将对比下 Pandas 1.5,Polars,Pandas 2.0 。看看在速度上 Pandas 2.0有没有优势。
封面图

使用Python实现Hull Moving Average (HMA)

2023-04-05
阅读 6 分钟
1.2k
赫尔移动平均线(Hull Moving Average,简称HMA)是一种技术指标,于2005年由Alan Hull开发。它是一种移动平均线,利用加权计算来减少滞后并提高准确性。

用遗传算法寻找迷宫出路

2023-04-04
阅读 14 分钟
1.4k
遗传算法需要两个参数,即种群和适应度函数。根据适应度值在群体中选择最适合的个体。最健康的个体通过交叉和突变技术产生后代,创造一个新的、更好的种群。这个过程重复几代,直到得到最好的解决方案。
封面图

奇异值分解(SVD)和图像压缩

2023-04-03
阅读 4 分钟
3k
在本文中,我将尝试解释 SVD 背后的数学及其几何意义,还有它在数据科学中的最常见的用法,图像压缩。奇异值分解是一种常见的线性代数技术,可以将任意形状的矩阵分解成三个部分的乘积:U、S、V。原矩阵A可以表示为:具体来说,A矩阵中的奇异值就是\Sigma矩阵中的对角线元素,它们是矩阵A的特征值的平方根,表示A矩阵在...

这个ChatGPT插件可以远程运行代码,还生成图表

2023-04-02
阅读 3 分钟
1.3k
我们做数据分析时一般都是使用这样的流程来进行:运行jupyter notebook、安装库、解决依赖关系和版本控制,数据分析,生成图表。ChatGPT的“Code Interpreter”插件可以帮助我们进行数据分析。
封面图

基于凸集上投影(POCS)的聚类算法

2023-04-01
阅读 3 分钟
1.8k
POCS:Projections onto Convex Sets。在数学中,凸集是指其中任意两点间的线段均在该集合内的集合。而投影则是将某个点映射到另一个空间中的某个子空间上的操作。给定一个凸集合和一个点,可以通过找到该点在该凸集合上的投影来进行操作。该投影是离该点最近的凸集内的点,可以通过最小化该点和凸集内任何其他点之间的...

使用Unit Scaling进行FP16 和 FP8 训练

2023-03-31
阅读 5 分钟
1.4k
随着支持fp8的硬件的发展,在不影响效率的前提下,进一步降低精度也成为了可能。但是这些较小的、低精度的格式在实践中并不总是易于使用。对于FP8来说则更加困难。因为这些较小的格式通常将用户限制在更窄的可表示值范围内。为了解决这个问题,Graphcore Research开发了一种新方法,我们称之为Unit Scaling。
封面图

时间序列特征提取的Python和Pandas代码示例

2023-03-30
阅读 4 分钟
1.8k
时间序列分析是理解和预测各个行业(如金融、经济、医疗保健等)趋势的强大工具。特征提取是这一过程中的关键步骤,它涉及将原始数据转换为有意义的特征,可用于训练模型进行预测和分析。在本文中,我们将探索使用Python和Pandas的时间序列特征提取技术。

扩散模型的Prompt指南:如何编写一个明确提示

2023-03-29
阅读 9 分钟
2.4k
Prompt(提示)是扩散模型生成图像的内容来源,构建好的提示是每一个Stable Diffusion用户需要解决的第一步。本文总结所有关于提示的内容,这样可以让你生成更准确,更好的图像
封面图

使用Pytorch实现对比学习SimCLR 进行自监督预训练

2023-03-28
阅读 8 分钟
1.7k
SimCLR(Simple Framework for Contrastive Learning of Representations)是一种学习图像表示的自监督技术。 与传统的监督学习方法不同,SimCLR 不依赖标记数据来学习有用的表示。 它利用对比学习框架来学习一组有用的特征,这些特征可以从未标记的图像中捕获高级语义信息。

高斯混合模型 GMM 的详细解释

2023-03-27
阅读 8 分钟
2.9k
高斯混合模型(后面本文中将使用他的缩写 GMM)听起来很复杂,其实他的工作原理和 KMeans 非常相似,你甚至可以认为它是 KMeans 的概率版本。 这种概率特征使 GMM 可以应用于 KMeans 无法解决的许多复杂问题。

使用树状图可视化聚类

2023-03-26
阅读 4 分钟
2.1k
一般情况下,我们都是使用散点图进行聚类可视化,但是某些的聚类算法可视化时散点图并不理想,所以在这篇文章中,我们介绍如何使用树状图(Dendrograms)对我们的聚类结果进行可视化。

Half-UNet:用于医学图像分割的简化U-Net架构

2023-03-25
阅读 3 分钟
1.7k
Half-UNet简化了编码器和解码器,还使用了Ghost模块(GhostNet)。并重新设计的体系结构,把通道数进行统一。论文动机编码器的不同类型的架构图,编码器(A-C)的结构分别来源于U-Net的编码器、解码器和全的Unet结构。下面是上图的一些结果指标将U-Net 的编码器和解码器都视为编码器。通过设计单个解码器来聚合 C1 到 C16 的...

10个Pandas的另类数据处理技巧

2023-03-24
阅读 7 分钟
878
本文所整理的技巧与以前整理过10个Pandas的常用技巧不同,你可能并不会经常的使用它,但是有时候当你遇到一些非常棘手的问题时,这些技巧可以帮你快速解决一些不常见的问题。
封面图

Huggingface微调BART的代码示例:WMT16数据集训练新的标记进行翻译

2023-03-23
阅读 5 分钟
1.7k
BART模型是用来预训练seq-to-seq模型的降噪自动编码器(autoencoder)。它是一个序列到序列的模型,具有对损坏文本的双向编码器和一个从左到右的自回归解码器,所以它可以完美的执行翻译任务。
封面图

DDPG强化学习的PyTorch代码实现和逐步讲解

2023-03-22
阅读 14 分钟
2.5k
深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)是受Deep Q-Network启发的无模型、非策略深度强化算法,是基于使用策略梯度的Actor-Critic,本文将使用pytorch对其进行完整的实现和讲解
封面图

NLP / LLMs中的Temperature 是什么?

2023-03-21
阅读 3 分钟
2.8k
大型语言模型能够根据给定的上下文或提示生成新文本,由于神经网络等深度学习技术的进步,这些模型越来越受欢迎。可用于控制生成语言模型行为的关键参数之一是Temperature 参数。在本文中,我们将讨论语言生成模型中Temperature 参数的作用,以及它如何影响生成文本的质量。
封面图

Pandas 2.0 简单介绍和速度评测

2023-03-20
阅读 3 分钟
1.3k
Pandas是机器学习中最常用的一个库了,我们基本上每天都会使用它。而pandas使用了一个“NumPy”作为后端,这个我们也都是知道的,但是最近 Pandas 2.0 的RC版已经最近发布了。这个版本主要包括bug修复、性能改进和增加Apache Arrow后端。当涉及到使用DF时,Arrow比Numpy提供了更多的优势。
封面图

2023年3月的10篇论文推荐

2023-03-19
阅读 6 分钟
1.1k
三月有很多的重大产品发布,包括刚刚发布的GPT4,还有Meta刚发布就被泄露的LLaMA,midjourney V5,还有ChatGPT的API(非常便宜)等等。

CLIP:语言-图像表示之间的桥梁

2023-03-18
阅读 3 分钟
1.7k
最近GPT4的火爆覆盖了一个新闻:midjourney v5发布,DALLE2,midjourney都可以从文本中生成图像,这种模型要求人工智能同时理解语言和图像数据。

GPT-4 和ChatGPT API的定价分析

2023-03-17
阅读 2 分钟
1.5k
OpenAI发布了他们的ChatGPT新机器学习模型GPT-4。GPT-4是GPT-3的一大进步,GPT-3是当前ChatGPT免费版本(GPT 3.5 Turbo)所运行的模型的基础,今天我们也来凑个热点,研究一下它们的定价
封面图

处理缺失值的三个层级的方法总结

2023-03-16
阅读 8 分钟
1.3k
缺失值是现实数据集中的常见问题,处理缺失值是数据预处理的关键步骤。缺失值可能由于各种原因而发生,例如数据的结构和质量、数据输入错误、传输过程中的数据丢失或不完整的数据收集。这些缺失的值可能会影响机器学习模型的准确性和可靠性,因为它们可能会引入偏差并扭曲结果,有些模型甚至在在缺少值的情况下根本无法...
封面图

SDG,ADAM,LookAhead,Lion等优化器的对比介绍

2023-03-15
阅读 5 分钟
1.9k
本文将介绍了最先进的深度学习优化方法,帮助神经网络训练得更快,表现得更好。有很多个不同形式的优化器,这里我们只找最基础、最常用、最有效和最新的来介绍。

集成时间序列模型提高预测精度

2023-03-14
阅读 6 分钟
788
集成各种弱学习器可以提高预测精度,但是如果我们的模型已经很强大了,集成学习往往也能够起到锦上添花的作用。流行的机器学习库scikit-learn提供了一个StackingRegressor,可以用于时间序列任务。但是StackingRegressor有一个局限性;它只接受其他scikit-learn模型类和api。所以像ARIMA这样在scikit-learn中不可用的模型...

图神经网络的数学原理总结

2023-03-13
阅读 11 分钟
1.1k
图深度学习(Graph Deep Learning) 多年来一直在加速发展。许多现实生活问题使GDL成为万能工具:在社交媒体、药物发现、芯片植入、预测、生物信息学等方面都显示出了很大的前景。

少样本学习综述:技术、算法和模型

2023-03-12
阅读 3 分钟
1.1k
有时这种数据在现实世界中是无法获得的。以医疗保健为例,我们可能没有足够的x光扫描来检查一种新的疾病。但是通过少样本学习可以让模型只从几个例子中学习到知识!

PlotNeuralNet + ChatGPT创建专业的神经网络的可视化图形

2023-03-11
阅读 5 分钟
1.8k
但是他的最大问题是需要我们手动的编写网络的结构,这是一个很麻烦的事情,这时 ChatGPT 就出来了,它可以帮我们生成LaTeX代码。在本文中,我将介绍如何安装和使用PlotNeuralNet,展示一些可视化示例,以及如何使用ChatGPT为我们生成LaTeX代码!