只有大规模算力才能救AI?强化学习之父 vs 牛津教授掀起隔空论战

70年来, 人们在AI领域“一直连续犯着同样的错误”。

这是“强化学习之父”理查德·萨顿(Richard S. Sutton)为同行后辈们敲响的警钟。

他在博客上发表最新文章《苦涩的教训》(The Bitter Lesson),总结了AI发展史上的怪圈:

人类不断试图把自己的知识和思维方式植入到AI之中,比如用人类的思路教AI下棋、将让AI按照人类总结的思路来识别图像等等。这些做法,能带来暂时的性能提升,长期来看却会阻碍研究的持续进步。

真正的突破,总是来自完全相反的方向。摒弃人类在特定领域的知识、利用大规模算力的方法,总会获得最终胜利。

靠自我对弈磨炼围棋技艺的AlphaGo,基于统计方法、深度学习来识别语音、图像的算法,一次次击败先前那些浓缩了人类知识的AI,甚至人类自己。

搜索、学习,充分利用大规模算力才是王道。用人类在特定领域的知识来提升AI智能体的能力,都是在走弯路。

萨顿说:“将AI建立在我们对自身思维方式的认知上,是行不通的。”

OpenAI首席科学家Ilya Sutskever精辟地总结了萨顿的核心观点:算力常胜。

阅读 583
0 条评论