- Data Quality Importance: Critical for production pipelines, and the Great Expectations library is popular.
- Great Expectations Overview: A powerful tool for maintaining data quality by defining, managing, and validating expectations.
- Integrating with Databricks: Allows automating data quality checks within Databricks workflows.
- Supported Data Platforms: Includes relational databases (PostgreSQL, MySQL, etc.), data warehouses (Snowflake, Redshift, etc.), data lakes (Amazon S3, etc.), file systems (local, HDFS), and big data platforms (Apache Spark, Databricks).
Step-by-Step Guide:
- Prerequisites: Have a Databricks workspace and install Great Expectations.
- Install: Use
%pip install great_expectations
in a Databricks notebook. - Initialize:
import great_expectations as ge; context = ge.data_context.DataContext()
. - Create and Validate Expectations: Load data into a Spark DataFrame, convert to Great Expectations DataFrame, create expectations like column existence, null values, value sets, and column means, and validate the data.
- Save and Load Expectations: Save to a JSON file using
df_ge.save_expectation_suite()
, and load from a JSON file usingdf_ge.load_expectation_suite()
. - Generate Data Docs: Use
context.build_data_docs()
andcontext.open_data_docs()
to generate and open data documentation.
- Example Use Case: For validating a sales dataset, follow similar steps as above including loading data, creating expectations, validating, saving and loading expectations, and generating data docs.
- Conclusion: This integration provides a powerful way to ensure data quality and reliability in data pipelines.
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。