图像金字塔
通常,我们曾经使用恒定大小的图像.但在某些情况下,我们需要使用不同分辨率的(相同)图像.例如,在搜索图像中的某些内容时,如脸部,我们不确定该对象在所述图像中的大小.
具有不同分辨率的图像被称为图像金字塔(因为当它们保持在堆叠中,底部具有最高分辨率图像而顶部具有最低分辨率图像时,它看起来像金字塔).
图像金字塔有两种:
- 高斯金字塔和
- 拉普拉斯金字塔
高斯金字塔的顶部是通过将底部图像中的连续的行和列去除得到的.顶部图像中的每个像素值等于下一层图像中 5 个像素的高斯加权平均值.这样操作一次一个 MxN 的图像就变成了一个 M/2xN/2 的图像。所以这幅图像的面积就变为原来图像面积的四分之一.这被称为an Octave(一个八度)。连续进行这样的操作就会得到一个分辨率不断下降的图像金字塔.
函数cv2.pyrDown()
从一个高分辨率大尺寸的图像向上构建一个金子塔 (尺寸变小,分辨率降低).
代码:
import cv2
img = cv2.imread('img.jpg')
lower_reso = cv2.pyrDown(img)
cv2.imshow('src',img)
cv2.imshow('HigherReso',lower_reso)
cv2.waitKey()
继续使用函数cv2.pyrUp()
从一个低分辨率小尺寸的图像向下构建一个金子塔(尺寸变大,但分辨率不会增加)
代码:
import cv2
img = cv2.imread('img.jpg')
lower_reso = cv2.pyrDown(img)
higher_reso2 = cv2.pyrUp(lower_reso)
cv2.imshow('show',higher_reso2)
cv2.waitKey()
NOTE:
当用 cv2.pyrDown()
,图像的分辨率就会降低,信息就会被丢失.如果先cv2.pyrDown()产生的中间图像再使用函数cv2.pyrUp()得到图像,与原图像相比分辨率差了很多.
可以修改代码:
import cv2
img = cv2.imread('img.jpg')
higher_reso2 = cv2.pyrUp(img)
lower_reso = cv2.pyrDown(higher_reso2)
cv2.imshow('show',lower_reso)
cv2.waitKey()
拉普拉斯金字塔由高斯金字塔形成,大部分元素都是零,用于图像压缩.
代码:
import cv2
img = cv2.imread('img.jpg')
img = cv2.Canny(img, 100, 200)
higher_reso2 = cv2.pyrUp(img)
lower_reso = cv2.pyrDown(higher_reso2)
cv2.imshow('src',img)
cv2.imshow('higher_reso2',higher_reso2)
cv2.imshow('lower_reso',lower_reso)
cv2.waitKey()
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。