前言

合理使用作为一等对象的函数,可以使某种设计模式得以简化。

关于策略

定义一系列算法,把它们一一封装起来,并且使它们可以相互替换。

一个策略模式的示例

    • 规则
    1 有1000或以上积分的客户,每个订单享受5%的折扣。
    2 同一个订单中,单个商品的数量达到20个或以上,享受10%折扣。
    3 订单中的不同商品数达到10个或以上,享受7%折扣。
    • 策略模式

      • 上下文
      把一些计算委托给实现不同算法的可互换组件,它提供服务。本例中,上下文是Order,它会根据不同的算法计算促销折扣
      • 策略
      实现不同算法的组件共同的接口。本例中Promotion这个抽象类扮演这个角色。
      • 具体策略
      策略的具体子类。本例中为 fidelityPromo, BulkPromo, LargeOrderPromo三个子类。

    经典模式

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @File    : ex1.py
    # @Time    : 18/10/09 17:01
    
    from abc import ABC, abstractmethod
    from collections import namedtuple
    
    Customer = namedtuple('Customer', 'name fidelity')
    
    class LineItem:
    
        def __init__(self, product, quantity, price):
            self.product = product
            self.quantity = quantity
            self.price = price
    
        def total(self):
            return self.price * self.quantity
    
    
    class Order:  # 上下文
    
        def __init__(self, customer, cart, promotion=None):
            self.customer = customer
            self.cart = cart
            self.promotion = promotion
    
        def total(self):
            if not hasattr(self, '__total'):
                self.__total = sum(item.total() for item in self.cart)
            return self.__total
    
        def due(self):
            if self.promotion is None:
                discount = 0
            else:
                discount = self.promotion.discount(self)
            return self.total() - discount
    
        def __repr__(self):
            fmt = '<Order total: {:.2f} due: {:.2f}>'
            return fmt.format(self.total(), self.due())
    
    
    class Promotion(ABC):  # 策略:抽象基类
    
        @abstractmethod
        def discount(self, order):
            '''
            返回折扣金额(正值)
            :param order:
            :return:
            '''
    class FidelityPromo(Promotion):  # 第一个具体策略
        '''
        为积分1000或以上的顾客提供5%折扣
        '''
    
        def discount(self, order):
            return order.total() * .05 if order.customer.fidelity >= 1000 else 0
    
    class BulkItemPromo(Promotion): # 第二个具体策略
        '''
        单个商品为20个或以上时提供10%折扣
        '''
    
        def discount(self, order):
            discount = 0
            for item in order.cart:
                if item.quantity >= 20:
                    discount += item.total() * .1
            return discount
    
    class LargeOrderPromo(Promotion): # 第三个具体策略
        '''
        订单中的不同商品达到10个或以上时提供7%折扣
        '''
    
        def discount(self, order):
            distinct_items = {item.product for item in order.cart}
            if len(distinct_items) >= 10:
                return order.total() * .07
            return 0
    
    # 两个顾客:joe的积分为0,ann的积分是1100
    joe = Customer('John Doe', 0)
    ann = Customer('Ann Smith', 1100)
    
    # 有3个商品的购物车
    cart = [LineItem('banana', 4, .5), LineItem('apple', 10, 1.5), LineItem('watermellon', 5, 5.0)]
    
    # joe未享受到折扣,ann享受到了5%折扣
    ex1 = Order(joe, cart, FidelityPromo())
    ex2 = Order(ann, cart, FidelityPromo())
    
    # banana数量超过20个,joe享受到了10%的折扣
    banana_cart = [LineItem('banana', 30, .5), LineItem('apple', 10, 1.5)]
    ex3 = Order(joe, banana_cart, BulkItemPromo())
    
    # 商品数量超过了10个,为joe提供了7%的折扣
    long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]
    ex4 = Order(joe, long_order, LargeOrderPromo())
    ex5 = Order(joe, cart, LargeOrderPromo())
    
    print(ex1)
    print(ex2)
    print(ex3)
    print(ex4)
    print(ex5)

    函数模式

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @File    : ex2.py
    # @Time    : 18/10/10 10:46
    
    from collections import namedtuple
    
    Customer = namedtuple('Customer', 'name fidelity')
    
    class LineItem:
    
        def __init__(self, product, quantity, price):
            self.product = product
            self.quantity = quantity
            self.price = price
    
        def total(self):
            return self.price * self.quantity
    
    class Order:  # 上下文
    
        def __init__(self, customer, cart, promotion=None):
            self.customer = customer
            self.cart = cart
            self.promotion = promotion
    
        def total(self):
            if not hasattr(self, '__total'):
                self.__total = sum(item.total() for item in self.cart)
            return self.__total
    
        def due(self):
            if self.promotion is None:
                discount = 0
            else:
                discount = self.promotion(self)
            return self.total() - discount
    
        def __repr__(self):
            fmt = '<Order total: {:.2f} due: {:.2f}>'
            return fmt.format(self.total(), self.due())
    
    def fidelity_promo(order):
    
        return order.total() * .05 if order.customer.fidelity >= 1000 else 0
    
    def bulk_item_promo(order):
    
         discount = 0
         for item in order.cart:
             if item.quantity >= 20:
                 discount += item.total() * .1
         return discount
    
    def large_order_promo(order):
    
         distinct_items = {item.product for item in order.cart}
         if len(distinct_items) >= 10:
             return order.total() * .07
         return 0
    
    
    # 两个顾客:joe的积分为0,ann的积分是1100
    joe = Customer('John Doe', 0)
    ann = Customer('Ann Smith', 1100)
    
    # 有3个商品的购物车
    cart = [LineItem('banana', 4, .5), LineItem('apple', 10, 1.5), LineItem('watermellon', 5, 5.0)]
    
    eg1 = Order(joe, cart, fidelity_promo)
    eg2 = Order(ann, cart, fidelity_promo)
    
    banana_cart = [LineItem('banana', 30, .5), LineItem('apple', 10, 1.5)]
    eg3 = Order(joe, banana_cart, bulk_item_promo)
    
    long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)]
    eg4 = Order(joe, long_order, large_order_promo)
    
    print(eg1,'\n', eg2, '\n',  eg3, '\n', eg4)

    对比

    经典模式中每个具体策略都是一个类,而且只定义了一个方法,即discount。此外,策略实例没有状态(实例属性)
    使用函数代替抽象类,每个策略都是函数,不必实例化,拿来即用。新的Order类使用起来更简单,代码行数更少。

    参考

    <<流畅的Python>>

    EngineerLeo
    598 声望38 粉丝

    专注于云原生、AI等相关技术