下面代码是否有错误?如果有错,错在哪里?
struct Test
{
    Test() {};
    Test(int i){}
    void func(){}
};

int main()
{
    Test t1(1);
    Test t2();
    t1.func();
    t2.func();
}

答案:

1. Test t2();  ==>  Test t2;
warning: empty parentheses interpreted as a function declaration

2. t2.func();  ==>
error: base of member reference is a function; perhaps you meant to call it with no arguments?

3. int main() 缺少返回值
C++ 编译器需要兼容 C 编译器,编译过现有的 C 代码,因此没有报错

下面的代码输出什么?为什么?
class Test
{
private:
    int m_i;
    int m_j;
public:
    Test(int v) : m_j(v), m_i(m_j)
    {
    }
    
    int getI()
    {
        return m_i;
    }
    
    int getJ()
    {
        return m_j;
    }
};

int main()
{
    Test t1(1);
    Test t2(2);
    
    cout << t1.getI() << " " << t1.getJ() << endl;
    cout << t2.getI() << " " << t2.getJ() << endl;
} 

输出:

随机数, 1
随机数, 2

说明:

成员的初始化顺序与成员的声明顺序相同
成员的初始化顺序与初始化列表中的位置无关

本题中成员变量在未初始化前存储的是随机数

参考:
初始化列表的使用


下面的代码输出什么?为什么?

#include <iostream>

using namespace std;

class Test
{
private:
    int m_i;
    int m_j;
public:
    Test()
    {
        cout << "Test()" << endl;
    }
    
    Test(int v)
    {
        cout << "Test(int v)" << endl;
    } 
    
    Test(const Test& v)
    {
        cout << "Test(const Test& v)" << endl;
    }
    
    ~Test()
    {
        cout << "~Test()" << endl;
    }
};

Test Play(Test t)
{
    return t;
}

int main()
{
    Test m_t = Play(5);
}

输出:

g++ test.cpp -fno-elide-constructors 禁止编译器做任何优化

Test(int v)
Test(const Test& v)
Test(const Test& v)
Test(const Test& v)
~Test()
~Test()
~Test()
~Test()
Which virtual fucntion re-declaration of the Derived class are correct ?
A. Base* Base::copy(Base*);
   Base* Derived::copy(Derived*);

B. Base* Base::copy(Base*);
   Derived* Derived::copy(Base*);

C. int Base::count();
   int Derived::count();

D. void Base::func(Base*)const;
   void Derived::func(Base*);

答案:【C】
说明:

多态发生的条件:发生在派生类与基类之间;函数签名必须完全一致;

下面的程序输出什么?为什么?
class Base
{
public:
    virtual void func()
    {
        cout << "Base::func()" << endl;
    }
};

class Child:public Base
{
public:
    void func()
    {
        cout << "Child::func()" << endl;
    }
};

int main()
{
    Base* pb = new Base();
    pb->func();
    Child* pc = (Child*)pb;  // 注意这里!!!
    pc->func();
    delete pc;
    
    pb = new Child();
    pb->func();
    pc = (Child*)pb;
    pc->func();
}

输出:

cout << "Base::func()" << endl;   // 正常调用
cout << "Base::func()" << endl;
cout << "Child::func()" << endl;  // 多态调用
cout << "Child::func()" << endl;  // 正常调用

说明:

Child* pc = (Child*)pb;  ==> 子类对象指针指向父类对象,这是及其危险的!!

可是为什么没有发生程序错误呢?
因为有虚函数表的存在,无论是子类对象指针还是父类对象指针指向父类对象,都会发生相同的查找过程

clipboard.png

当 func 不是虚函数时,就不会发生虚函数表的查找过程,此时一定会发生程序崩溃

参考:
C++对象模型分析


A C++ develoer wants to handle a static_cast<char*>() operation for the String class shown below. Which of the following options are valid declarations that will accomplish task ?
class String
{
public:
// ...
// declaration goes here
}

A. char* operator char*();
B. operator char*();
C. char* operator();
D. char* operator String();

答案:【B】


以下两种情况:(1)new 一个 10 个整型变量的数组 (2)分 10 次 new 一个整型变量。 哪个占用的空间更大?
A. 1
B. 2
C. 一样多
D. 无法确定

答案:【B】
说明:

clipboard.png


下面程序输出什么?
int main()
{
    int v[2][10] = 
    {
        { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
        {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
    }
    
    int (*a)[8] = (int(*)[8])v;
    
    cout << **a << endl;
    cout << **(a + 1) << endl;
    cout << *(*a + 1) << endl;
    cout << *(a[0] + 1) << endl;
    cout << *a[1] << endl;
}

输出:

1
9
2
2
9

参考:
多维数组和多维指针


下面的程序输出什么?为什么?
class Base
{
public:
    int a;
    
    Base() 
    { 
        a = 1; 
    }
    
    void println() 
    {
        cout << a << endl;
    }
};

class Child : public Base
{
public:
    int a;
    
    Child() 
    {
        a = 2;
    }
};

int main()
{
    Child c;
    c.println();
    cout << c.a << endl;
}

输出:

1
2

说明:

c.println(); ==> 父类中的 printlin 被调用,由于作用域, 父类中的 a 被访问

c.a ==> 发生同名覆盖

参考:
父子间的冲突


用 C/C++ 语言实现一个存储整型数据的栈结构
要求实现以下功能:
1. 入栈操作 push
2. 出栈操作 pop
3. 栈大小操作 size
4. 栈中最小元素 min
class IntStack
{
private:
    list<int> m_stack;
    list<int> m_cmin;

public:
    void push(int v);
    int pop();
    int top();
    int size();
    int min();
};

void IntStack::push(int v)
{
    m_stack.push_front(v);

    if( m_cmin.size() != 0 )
    {
        if( v < m_cmin.front() )
        {
            m_cmin.push_front(v);
        }
        else
        {
            m_cmin.push_front(m_cmin.front());
        }
    }
    else
    {
        m_cmin.push_front(v);
    }
}

int IntStack::pop()
{
    int ret = m_stack.front();

    m_stack.pop_front();
    m_cmin.pop_front();

    return ret;
}

int IntStack::top()
{
    return m_stack.front();
}

int IntStack::size()
{
    return m_stack.size();
}

int IntStack::min()
{
    return m_cmin.front();
}

编程实现二叉树的相等比较,当二叉树每个节点的值对应相等时,二叉树相等,否则不相等
struct BTreeNode
{
    int v;
    BTreeNode* left;
    BTreeNode* right;
};

函数原型:
bool BTreeCompare(BTreeNode* b1, BTreeNode* b2);

深度优先:

bool BTreeCompare(BTreeNode* b1, BTreeNode* b2)
{
    bool ret = false;

    if( (b1 != NULL) && (b2 != NULL) )
    {
        ret = (b1->v == b2->v) && BTreeCompare(b1->left, b2->left) && BTreeCompare(b1->right, b2->right);
    }

    if( (b1 == NULL) && (b2 == NULL) )
    {
        ret = true;
    }

    return ret;
}

广度优先:

bool BTreeCompareEx(BTreeNode* b1, BTreeNode* b2)
{
    bool ret = true;
    list<BTreeNode*> l1;
    list<BTreeNode*> l2;

    l1.push_back(b1);
    l2.push_back(b2);

    while( ret && l1.size() && l2.size() )
    {
        BTreeNode* n1 = l1.front();
        BTreeNode* n2 = l2.front();

        l1.pop_front();
        l2.pop_front();

        if( (n1 != NULL) && (n2 != NULL) )
        {
            ret = (n1->v == n2->v);

            l1.push_back(n1->left);
            l1.push_back(n1->right);

            l2.push_back(n1->left);
            l2.push_back(n2->right);
        }
        else if( (n1 == NULL) && (n2 != NULL) )
        {
            ret = false;
        }
        if( (n1 != NULL) && (n2 == NULL) )
        {
            ret = false;
        }
    }

    return ret && (l1.size() == 0) && (l2.size() == 0);
}

TianSong
737 声望140 粉丝

阿里山神木的种子在3000年前已经埋下,今天不过是看到当年注定的结果,为了未来的自己,今天就埋下一颗好种子吧