NumPy是什么?

今天开始会陆续为大家带来数据科学常用包的基础用法

数据分析的工作涉及到大量的数值运算,一个高效方便的科学计算工具是必不可少的。Python语言一开始并不是设计为科学计算使用的语言,随着越来越多的人发现Python的易用性,逐渐出现了关于Python的大量外部扩展,Numpy (Numeric Python)就是其中之一。

Numpy提供了大量的数值编程工具,可以方便地处理向量、矩阵等运算,极大地便利了人们在科学计算方面的工作。另一方面,Python是免费,相比于花费高额的费用使用Matlab,Numpy的出现使Python得到了更多人的青睐。

我们可以简单看一下如何开始使用NumPy:

import numpy as np
numpy.version.full_version
'1.16.4'


二、NumPy对象:数组

NumPy中的基本对象是同类型的多维数组(homogeneous multidimensional array),这和C++中的数组是一致的,例如字符型和数值型就不可共存于同一个数组中。先上例子:

a = np.arange(20)
print(a)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]

这里我们生成了一个一维数组a,从0开始,步长为1,长度为20。Python中的计数是从0开始的,R和Matlab的使用者需要小心。

我们可以通过"type"函数查看a的类型,这里显示a是一个array:

type(a)
numpy.ndarray


通过函数"reshape",我们可以重新构造一下这个数组,例如,我们可以构造一个4*5的二维数组,其中"reshape"的参数表示各维度的大小,且按各维顺序排列(两维时就是按行排列,这和R中按列是不同的):

a = a.reshape(4, 5)
print(a)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]

构造更高维的也没问题:

a = a.reshape(2, 2, 5)
print(a)
[[[ 0  1  2  3  4]
  [ 5  6  7  8  9]]

 [[10 11 12 13 14]
  [15 16 17 18 19]]]

既然a是array,我们还可以调用array的函数进一步查看a的相关属性:"ndim"查看维度;"shape"查看各维度的大小;"size"查看全部的元素个数,等于各维度大小的乘积;"dtype"可查看元素类型;"dsize"查看元素占位(bytes)大小。

a.ndim
3



a.shape
(2, 2, 5)



a.size
20



a.dtype
dtype('int32')


三、创建数组

数组的创建可通过转换列表实现,高维数组可通过转换嵌套列表实现:

raw = [0,1,2,3,4]
a = np.array(raw)
a
array([0, 1, 2, 3, 4])



raw = [[0,1,2,3,4], [5,6,7,8,9]]
b = np.array(raw)
b
array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])


一些特殊的数组有特别定制的命令生成,如4*5的全零矩阵:

d = (4, 5)
np.zeros(d)
array([[0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]])


默认生成的类型是浮点型,可以通过指定类型改为整型:

d = (4, 5)
np.ones(d, dtype=int)
array([[1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1]])


[0, 1)区间的随机数数组:

np.random.rand(5)
array([0.80378557, 0.09833667, 0.95280995, 0.17707594, 0.80651926])


服从正态分布的随机数组:

np.random.randn(5)
array([ 0.678737  , -1.14965615, -1.40492579,  1.22479651,  0.2751816 ])


四、数组操作

简单的四则运算已经重载过了,全部的'+','-','*','/'运算都是基于全部的数组元素的,以加法为例:

a = np.array([[1.0, 2], [2, 4]])
print ("a:\n",a)

b = np.array([[3.2, 1.5], [2.5, 4]])
print ("b:\n",b)
print ("a+b:\n",a+b)
a:
 [[1. 2.]
 [2. 4.]]
b:
 [[3.2 1.5]
 [2.5 4. ]]
a+b:
 [[4.2 3.5]
 [4.5 8. ]]

这里可以发现,a中虽然仅有一个与元素是浮点数,其余均为整数,在处理中Python会自动将整数转换为浮点数(因为数组是同质的),并且,两个二维数组相加要求各维度大小相同。当然,NumPy里这些运算符也可以对标量和数组操作,结果是数组的全部元素对应这个标量进行运算,还是一个数组:

print ("3 * a \n",3*a)
print ("b + 1.8 \n",b )
3 * a :
 [[ 3.  6.]
 [ 6. 12.]]
b + 1.8 
 [[3.2 1.5]
 [2.5 4. ]]

类似C++,'+='、'-='、'*='、'/='操作符在NumPy中同样支持:

a /= 2
a
array([[0.5, 1. ],
       [1. , 2. ]])


开根号求指数也很容易:

print(a)
[[0.5 1. ]
 [1.  2. ]]


print ("np.exp:\n",np.exp(a))
np.exp:
 [[1.64872127 2.71828183]
 [2.71828183 7.3890561 ]]


print ("np.sqrt:\n",np.sqrt(a))
np.sqrt:
 [[0.70710678 1.        ]
 [1.         1.41421356]]


print ("np.square:\n",np.square(a))
np.square:
 [[0.25 1.  ]
 [1.   4.  ]]


print ("np.power:\n",np.power(a,3))
np.power:
 [[0.125 1.   ]
 [1.    8.   ]]

需要知道二维数组的最大最小值怎么办?想计算全部元素的和、按行求和、按列求和怎么办?NumPy的ndarray类已经做好函数了:

a = np.arange(20).reshape(4,5)
a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])



print("sum of all elements in a: " + str(a.sum()))
print("maximum element in a: " + str(a.max()))
print("minimum element in a: " + str(a.min()))
print("maximum element in each row of a: " + str(a.max(axis=1)))
print("minimum element in each column of a: " + str(a.min(axis=0)))
sum of all elements in a: 190
maximum element in a: 19
minimum element in a: 0
maximum element in each row of a: [ 4  9 14 19]
minimum element in each column of a: [0 1 2 3 4]

科学计算中大量使用到矩阵运算,除了数组,NumPy同时提供了矩阵对象(matrix)。矩阵对象和数组的主要有两点差别:一是矩阵是二维的,而数组的可以是任意正整数维;二是矩阵的'*'操作符进行的是矩阵乘法,乘号左侧的矩阵列和乘号右侧的矩阵行要相等,而在数组中'*'操作符进行的是每一元素的对应相乘,乘号两侧的数组每一维大小需要一致。数组可以通过asmatrix或者mat转换为矩阵,或者直接生成也可以:

a = np.arange(20).reshape(4, 5)
a = np.asmatrix(a)
print(type(a))

b = np.matrix('1.0 2.0; 3.0 4.0')
print(type(b))
<class 'numpy.matrix'>
<class 'numpy.matrix'>

再来看一下矩阵的乘法,这使用arange生成另一个矩阵b,arange函数还可以通过arange(起始,终止,步长)的方式调用生成等差数列,注意含头不含尾。

b = np.arange(2, 45, 3).reshape(5, 3)
b = np.mat(b)
print(b)
[[ 2  5  8]
 [11 14 17]
 [20 23 26]
 [29 32 35]
 [38 41 44]]

回到我们的问题,矩阵a和b做矩阵乘法:

print ("matrix a:\n",a)
print("matrix b:\n",b)

c = a * b
print("matrix c:\n",c)
matrix a:
 [[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
matrix b:
 [[ 2  5  8]
 [11 14 17]
 [20 23 26]
 [29 32 35]
 [38 41 44]]
matrix c:
 [[ 290  320  350]
 [ 790  895 1000]
 [1290 1470 1650]
 [1790 2045 2300]]

五、数组元素访问

数组和矩阵元素的访问可通过下标进行,以下均以二维数组(或矩阵)为例:

a = np.array([[3.2, 1.5], [2.5, 4]])
print(a[0][1])
print(a[0, 1])
1.5
1.5

可以通过下标访问来修改数组元素的值:

b = a
a[0][1] = 2.0
print(a)
print(b)
[[3.2 2. ]
 [2.5 4. ]]
[[3.2 2. ]
 [2.5 4. ]]

现在问题来了,明明改的是a0,怎么连b0也跟着变了?这个陷阱在Python编程中很容易碰上,其原因在于Python不是真正将a复制一份给b,而是将b指到了a对应数据的内存地址上。想要真正的复制一份a给b,可以使用copy:

a = np.array([[3.2, 1.5], [2.5, 4]])
b = a.copy()
a[0][1] = 2.0
print ("a:",a)
print ("b:",b)
a: [[3.2 2. ]
 [2.5 4. ]]
b: [[3.2 1.5]
 [2.5 4. ]]

若对a重新赋值,即将a指到其他地址上,b仍在原来的地址上:

a = np.array([[3.2, 1.5], [2.5, 4]])
b = a
a = np.array([[2, 1], [9, 3]])
print ("a:\n",a)
print ("b:\n",b)
a:
 [[2 1]
 [9 3]]
b:
 [[3.2 1.5]
 [2.5 4. ]]

利用':'可以访问到某一维的全部数据,例如取矩阵中的指定列:

a = np.arange(20).reshape(4, 5)
print ("a:\n",a)
print ("the 2nd and 4th column of a::\n",a[:,[1,3]])
a:
 [[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
the 2nd and 4th column of a::
 [[ 1  3]
 [ 6  8]
 [11 13]
 [16 18]]

稍微复杂一些,我们尝试取出满足某些条件的元素,这在数据的处理中十分常见,通常用在单行单列上。下面这个例子是将第一列大于5的元素(10和15)对应的第三列元素(12和17)取出来:

a[:, 2][a[:, 0] > 5]
array([12, 17])


可使用where函数查找特定值在数组中的位置:

loc = numpy.where(a==11)
print(loc)
print(a[loc[0][0], loc[1][0]])
(array([2], dtype=int64), array([1], dtype=int64))
11

六、数组操作

还是拿矩阵(或二维数组)作为例子,首先来看矩阵转置:

a = np.random.rand(2,4)
print ("a:\n",a)
a = np.transpose(a)
print ("a is an array, by using transpose(a):\n",a)

b = np.random.rand(2,4)
b = np.mat(b)
print ("b:\n",b)
print ("b is a matrix, by using b.T:\n",b.T)
a:
 [[0.49632956 0.65061015 0.36037379 0.29664563]
 [0.18319505 0.45525932 0.08422801 0.75167911]]
a is an array, by using transpose(a):
 [[0.49632956 0.18319505]
 [0.65061015 0.45525932]
 [0.36037379 0.08422801]
 [0.29664563 0.75167911]]
b:
 [[0.51087064 0.2058778  0.88659661 0.78428426]
 [0.62716285 0.46838085 0.63015861 0.69754748]]
b is a matrix, by using b.T:
 [[0.51087064 0.62716285]
 [0.2058778  0.46838085]
 [0.88659661 0.63015861]
 [0.78428426 0.69754748]]

矩阵求逆:

import numpy.linalg as nlg
a = np.random.rand(2,2)
print ("a:\n",a)
ia = nlg.inv(a)
print ("inverse of a:\n",ia)
print ("a * inv(a):\n",a * ia)
a:
 [[0.7748124  0.08125528]
 [0.99696367 0.73251292]]
inverse of a:
 [[ 1.50551971 -0.16700242]
 [-2.04904025  1.59245703]]
a * inv(a):
 [[ 1.16649535 -0.01356983]
 [-2.04281868  1.16649535]]

求特征值和特征向量

a = np.random.rand(3,3)
eig_value, eig_vector = nlg.eig(a)

print ("eigen value:\n",eig_value)
print ("eigen vector:\n",eig_vector)
eigen value:
 [ 1.75590394+0.j         -0.25188941+0.08867887j -0.25188941-0.08867887j]
eigen vector:
 [[ 0.33976986+0.j          0.47679494-0.21597791j  0.47679494+0.21597791j]
 [ 0.81509742+0.j          0.24255425+0.21077809j  0.24255425-0.21077809j]
 [ 0.46922557+0.j         -0.78915154+0.j         -0.78915154-0.j        ]]

按列拼接两个向量成一个矩阵:

a = np.array((1,2,3))
b = np.array((2,3,4))
print(np.column_stack((a,b)))
[[1 2]
 [2 3]
 [3 4]]

在循环处理某些数据得到结果后,将结果拼接成一个矩阵是十分有用的,可以通过vstack和hstack完成:

a = np.random.rand(2,2)
b = np.random.rand(2,2)
print ("a:\n",a)
print ("b:\n",b)
c = np.hstack([a,b])
d = np.vstack([a,b])
print("horizontal stacking a and b:\n",c)
print("vertical stacking a and b:\n",d)
a:
 [[0.50331973 0.49651025]
 [0.89325327 0.31245265]]
b:
 [[0.35846554 0.56841584]
 [0.88041789 0.81287829]]
horizontal stacking a and b:
 [[0.50331973 0.49651025 0.35846554 0.56841584]
 [0.89325327 0.31245265 0.88041789 0.81287829]]
vertical stacking a and b:
 [[0.50331973 0.49651025]
 [0.89325327 0.31245265]
 [0.35846554 0.56841584]
 [0.88041789 0.81287829]]

七、缺失值

缺失值在分析中也是信息的一种,NumPy提供nan作为缺失值的记录,通过isnan判定。

a = np.random.rand(2,2)
a[0, 1] = np.nan
print(np.isnan(a))
[[False  True]
 [False False]]

nan_to_num可用来将nan替换成0,pandas中提供能指定nan替换值的函数。

print(np.nan_to_num(a))
[[0.04279427 0.        ]
 [0.08386045 0.3567586 ]]

参考文献

  1. http://wiki.scipy.org/Tentati...
  2. Sheppard K. Introduction to Python for econometrics, statistics and data analysis. Self-published, University of Oxford, version, 2012, 2.

alpha94511
549 声望995 粉丝

Python爱好者, 前端开发厌恶者