预测是时间序列相关知识中比较重要的一个应用场景。我们在前面说过[时间序列数据(上)],时间序列可以分为平稳时间序列与非平稳时间序列两种。今天这一篇就主要介绍下《平稳时间序列》预测相关的方法。
所谓平稳时间序列,就是随着时间的推移,要研究指标的数值不发生改变,或者在某个小范围内进行波动。定量一点来讲,就是随着时间的推移,该指标的均值和方差不发生变化。比如下图这样:随着时间的推移,均值和方差基本保持不变。
针对此种时间序列,主要有简单平均法、移动平均法、指数平滑法这三种预测方法。
1.简单平均法
简单平均法就如它的名字一样,就是对已有的数据简单平均一下,并将得到的均值作为下一期的预测值。
比如现在有我国2000年-2017年每年的gdp数值,简单平均法就是对2018年之前的gdp值求平均,然后将这个平均值作为2018年的gdp预测值。
2.移动平均法
简单平均法适用于不同时期数据基本维持不变的情况,但是有的具有周期性的时间序列,如果还用简单平均法的话,误差就会很大。这个时候就可以考虑移动平均法,移动平均法是不用已有的全部的数值去求平均,而是用最近的一段时间的数值去求平均。
比如,我们可以对2015年-2017年的gdp值求平均,并将平均值作为2018年的预测值。
通过和简单平均法得到的预测值做对比可以看到,移动平均法的结果要比简单平均法准确度高。
我们认为距离未来越近的数值应该对未来的影响越大,也就是在预测中应该占据更大的权重,在移动平均法的基础上给不同的数值赋予不同的权重,并将加权平均值作为未来的预测值。
比如,我们还是对2015年-2017年的gdp求平均,并分别给与这三年的权重为1、2、3,最后将加权平均值作为2018年的预测值。
可以看到加权移动平均要比普通的移动平均准确度要更高一些。
加权移动平均法的核心在于移动多少,以及每一期的权重应该定多少,这个需要去测试,看具体哪种取值对应的准确度要高一些。
3.指数平滑法
指数平滑其实是一种特殊的加权平均,我们前面的移动加权平均中每一期的权重我们是人工给定的,指数平滑法中,每一期的权重是呈指数增长的,距离未来越近权重越高,指数平滑的预测模型如下:
Xt+1为第t+1期的预测值,X1、X2、Xt分为为第1期、2期、t期的实际值,α为每一期的权重值,需要注意的是最后一项是(1-α),而不是α(1-α)。
比如我们还是对2015年-2017年的gdp进行指数平滑,令α=0.6,将最后平滑结果作为2018年gdp的预测值。
可以看到指数平滑的结果要比加权移动平均的准确度更高一些。
指数平滑的核心在于α值得选取,具体选多少,也是需要通过试验,取值多少时对应的准确度比较高。
以上就是关于平稳时间序列相关的预测方法,我们下一篇将介绍趋势时间序列相关的预测方法。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。