环境
基础
conda create -n onnx python=3.8 -y
conda activate onnx
# ONNX
# https://github.com/onnx/onnx
conda install -c conda-forge onnx -y
python -c "import onnx; print(onnx.__version__)"
import onnx
model = onnx.load("model.onnx")
简化
# ONNX Simplifier
# https://github.com/daquexian/onnx-simplifier
pip install onnx-simplifier
python -m onnxsim -h
import onnxsim
model_simp, check = onnxsim.simplify(model, perform_optimization=False)
assert check, "Simplified ONNX model could not be validated"
<!--
转换
# ONNX to Caffe
# https://github.com/MTlab/onnx2caffe
git clone https://github.com/MTLab/onnx2caffe.git
# ONNX to PyTorch
# https://github.com/ToriML/onnx2pytorch
pip install onnx2pytorch
-->
使用
给出些 ONNX 模型使用的示例方法。
提取子模型
import onnx
input_path = "path/to/the/original/model.onnx"
output_path = "path/to/save/the/extracted/model.onnx"
input_names = ["input_0", "input_1", "input_2"]
output_names = ["output_0", "output_1"]
onnx.utils.extract_model(input_path, output_path, input_names, output_names)
修改输入输出名称
def _onnx_rename(model, names, names_new):
for node in model.graph.node:
for i, n in enumerate(node.input):
if n in names:
node.input[i] = names_new[names.index(n)]
for i, n in enumerate(node.output):
if n in names:
node.output[i] = names_new[names.index(n)]
for node in model.graph.input:
if node.name in names:
node.name = names_new[names.index(node.name)]
# print(model.graph.input)
for node in model.graph.output:
if node.name in names:
node.name = names_new[names.index(node.name)]
# print(model.graph.output)
_onnx_rename(model, ["input", "output"], ["input_new", "output_new"])
修改输入输出维度
此为修改模型的。如果要修改某节点的,见参考 onnx_cut.py 的 _onnx_specify_shapes()
。
from onnx.tools import update_model_dims
update_model_dims.update_inputs_outputs_dims(model,
{"input": [1, 3, 512, 512]},
{"scores": [100, 1], "boxes": [100, 4]}
)
推理模型节点维度
指明模型输入维度后,可自动推理后续节点的维度。
model_infer = onnx.shape_inference.infer_shapes(model)
获取图属性名称索引
辅助找出指定名称的图属性。
def _onnx_graph_name_map(graph_prop_list):
m = {}
for n in graph_prop_list:
m[n.name] = n
return m
node_map = _onnx_graph_name_map(graph.node)
initializer_map = _onnx_graph_name_map(graph.initializer)
input_map = _onnx_graph_name_map(graph.input)
output_map = _onnx_graph_name_map(graph.output)
value_info_map = _onnx_graph_name_map(graph.value_info)
获取节点输入名称索引
辅助找出指定输入名称的节点列表。输出同样。
def _onnx_node_input_map(node_list):
m = {}
for n in node_list:
for n_input in n.input:
if n_input in m:
m[n_input].append(n)
else:
m[n_input] = [n]
return m
node_input_map = _onnx_node_input_map(graph.node)
获取图属性位置
辅助找出图某属性所在列表位置。
def _onnx_graph_index(graph_prop_list, prop, by_name=False):
for i, n in enumerate(graph_prop_list):
if by_name:
if n.name == prop.name:
return i
else:
if n == prop:
return i
return -1
node_i = _onnx_graph_index(graph.node, node)
获取某区间的节点
辅助找出某区间的节点字典。
def _onnx_node_between(node_beg, node_end, node_input_map):
nodes = {}
def _between(beg, end):
if beg.name == end.name:
return
for n_output in beg.output:
for n in node_input_map[n_output]:
if n.name == end.name or n.name in nodes:
continue
nodes[n.name] = n
_between(n, end)
_between(node_beg, node_end)
return nodes
替换某个节点
替换或修改某个节点的过程。
from onnx import helper
node = graph.node[100]
node_i = _onnx_graph_index(graph.node, node)
graph.node.remove(node)
node_new = helper.make_node(
'Pad', # name
['X', 'pads', 'value'], # inputs
['Y'], # outputs
mode='constant', # attributes
)
graph.node.insert(node_i, node_new)
模型运行推理
模型运行推理,得到输出的过程。
import cv2 as cv
import numpy as np
import onnxruntime as nxrun
onnx_session = nxrun.InferenceSession("path/to/model.onnx")
img = cv.imread("path/to/image.png", cv.IMREAD_COLOR)
# img = img[...,::-1] # BGR > RGB
# _, _, h, w = input_node.shape # BCHW
# img = cv.resize(src=img, dsize=(w, h), interpolation=cv.INTER_LINEAR_EXACT)
input_data = np.moveaxis(img, -1, 0) # HWC > CHW
input_data = input_data[np.newaxis, :].astype(np.float32)
def _get_output_names(onnx_session):
names = []
for node in onnx_session.get_outputs():
names.append(node.name)
return names
output_names = _get_output_names(onnx_session)
outputs = onnx_session.run(
output_names, input_feed={"input": input_data}
)
参考
GoCoding 个人实践的经验分享,可关注公众号!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。