# -*- coding:utf-8 -*-
from PIL import Image, ImageEnhance
import numpy as np
import random
import cv2
def randomColor(image):
"""
对图像进行颜色抖动
:param image: PIL的图像image
:return: 有颜色色差的图像image
"""
image = Image.fromarray(np.uint8(image))
random_factor = np.random.randint(0, 21) / 10. # 随机因子
color_image = ImageEnhance.Color(image).enhance(random_factor) # 调整图像的饱和度
random_factor = np.random.randint(10, 21) / 10. # 随机因子
brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor) # 调整图像的亮度
random_factor = np.random.randint(10, 21) / 10. # 随机因1子
contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor) # 调整图像对比度
random_factor = np.random.randint(0, 21) / 10. # 随机因子
sharp_image = ImageEnhance.Sharpness(contrast_image).enhance(random_factor) # 调整图像锐度
final = np.asarray(sharp_image)
return final
def randomGaussian(img, mean=0.2, sigma=0.5):
"""
对图像进行高斯噪声处理
:param image:
:return:
"""
def gaussianNoisy(im, mean=0.2, sigma=0.5):
"""
对图像做高斯噪音处理
:param im: 单通道图像
:param mean: 偏移量
:param sigma: 标准差
:return:
"""
for _i in range(len(im)):
im[_i] += random.gauss(mean, sigma)
return im
img.flags.writeable = True # 将数组改为读写模式
width, height = img.shape[:2]
img_r = gaussianNoisy(img[:, :, 0].flatten(), mean, sigma)
img_g = gaussianNoisy(img[:, :, 1].flatten(), mean, sigma)
img_b = gaussianNoisy(img[:, :, 2].flatten(), mean, sigma)
img[:, :, 0] = img_r.reshape([width, height])
img[:, :, 1] = img_g.reshape([width, height])
img[:, :, 2] = img_b.reshape([width, height])
return img
# 均值滤波
def ranndom_blur(img, ksize=(3, 3)):
img_blur = cv2.blur(src=img, ksize=ksize)
return img_blur
if __name__ == '__main__':
pic = cv2.imread('./test.jpg')
a = randomColor(pic)
cv2.imwrite('randomColor.jpg', a)
b = randomGaussian(pic)
cv2.imwrite('randomGaussian.jpg', b)
c = ranndom_blur(pic)
cv2.imwrite('ranndom_blur.jpg', c)
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。