原文链接:http://tecdat.cn/?p=17931 

原文出处:拓端数据部落公众号

动量和马科维茨投资组合模型使 均值方差优化 组合成为可行的解决方案。通过建议并测试:

  • 增加最大权重限制

  • 增加目标波动率约束

来控制 均值方差最优化的解

下面,我将查看8个资产的结果:

首先,让我们加载所有历史数据

#*****************************************************************  
# 加载历史数据  
  
#*****************************************************************  
  
load.packages('quantmod')  
  
# 加载保存的原始数据  
#  
load('raw.Rdata')  
  
  
  
getSymbols.extra(N8.tickers, src = 'yahoo', from = '1970-01-01', env = data, raw.data =   
 for(i in data$symbolnames) data[[i]] = adjustOHLC(data[[i]]  

接下来,让我们测试函数

#*****************************************************************  
# 运行测试,每月数据  
#*****************************************************************  
  
plot(scale.one(data$prices))

prices = data$prices  
  
plotransition(res[[1]]['2013::'])

 

plot of chunk plot-3

接下来,让我们创建一个基准并设置用于所有测试。

#*****************************************************************  
# 建立基准  
#*****************************************************************  
models = list()   
  
commission = list(cps = 0.01, fixed = 10.0, percentage = 0.0)  
  
data$weight[] = NA  
  
model = brun(data, clean.signal=T, 

接下来,让我们获取权重,并使用它们来进行回测

#*****************************************************************  
#  转换为模型结果  
#*****************************************************************  
CLA = list(weight = res[[1]], ret = res[[2]], equity = cumprod(1 + res[[2]]), type = "weight")  
  
obj = list(weights = list(CLA = res[[1]]), period.ends  

我们可以复制相同的结果

#*****************************************************************  
#进行复制  
#*****************************************************************  
weight.limit = data.frame(last(pric  
obj = portfoli(data$prices,   
 periodicity = 'months', lookback.len = 12, silent=T,   
 const.ub = weight.limit,urns,1) + colSums(last(hist.returns,3)) +   
 colSums(last(hist.returns,6)) + colSums(last(hist.returns,12))) / 22  
 ia  
 },  
 min.risk.fns = list(  
 ) 

另一个想法是使用Pierre Chretien的平均输入假设

#*****************************************************************  
# 让我们使用Pierre的平均输入假设  
#*****************************************************************  
obj = portfolio(data$prices,   
 periodicity = 'months', lookback.len = 12, si  
 create.ia.fn =  create.(c(1,3,6,12), 0),  
 min.risk.fns = list(  
 TRISK.AVG = target.risk.portfolio(target.r  
 )  
  

最后,我们准备看一下结果

#*****************************************************************  
#进行回测  
#*****************************************************************  
  
plotb(models, plotX = T, log = 'y', Left

layout(1)  
barplot(sapply(models, turnover, data) 

plot of chunk plot-8

使用平均输入假设会产生更好的结果。

我想应该注意的主要观点是:避免盲目使用优化。相反,您应该使解决方案更具有稳健性。


最受欢迎的见解

1.用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)的应用的应用")

2.R语言GARCH-DCC模型和DCC(MVT)建模估计

3.R语言实现 Copula 算法建模依赖性案例分析报告

4.R语言COPULAS和金融时间序列数据VaR分析

5.R语言多元COPULA GARCH 模型时间序列预测

6.用R语言实现神经网络预测股票实例

7.r语言预测波动率的实现:ARCH模型与HAR-RV模型

8.R语言如何做马尔科夫转换模型markov switching model

9.matlab使用Copula仿真优化市场风险


拓端tecdat
195 声望46 粉丝